nextuppreviouscontentsindex
MOLCAS manual:

Next: 8.36 nemo Up: 8. Programs Previous: 8.34 MRCI

Subsections



8.35 Mula

The MULA calculates intensities of vibrational transitions between electronic states.


8.35.1 Dependencies

The MULA program may need one or more UNSYM files produced by the MCLR program, depending on input options.


8.35.2 Files

8.35.2.1 Input files

FileContents
UNSYMOutput file from the MCLR program

8.35.2.2 Output files

FileContents
plot.intensityContains data for plotting an artificial spectrum.


8.35.3 Input

The input for MULA begins after the program name:

  &MULA

There are no compulsory keyword.


8.35.3.1 Keywords

KeywordMeaning
TITLeFollowed by a single line, the title of the calculation.
FORCeA force field will be given as input (or read from file), defining two oscillators for which individual vibrational levels and transition data will be computed.
ATOMsFollowed by one line for each individual atom in the molecule. On each line is the label of the atom, consisting of an element symbol followed by a number. After the label, separated by one or more blanks, one can optionally give a mass number; else, a standard mass taken from the file data/atomic.data. After these lines is one single line with the keyword "END of atoms".
INTErnalSpecification of which internal coordinates that are to be used in the calculation. Each subsequent line has the form 'BOND a b' or 'ANGLE a b c' or or 'TORSION a b c d' or or 'OUTOFPL a b c d', for bond distances, valence angles, torsions (e.g. dihedral angles), and out-of-plane angles. Here, a...d stand for atom labels. After these lines follows one line with the keyword "END of internal".
MODEsSelection of modes to be used in the intensity calculation. This is followed by a list of numbers, enumerating the vibrational modes to use. The modes are numbered sequentially in order of vibrational frequency. After this list follows one line with the keyword "END of modes".
MXLEvelsFollowed by one line with the maximum number of excitations in each of the two states.
VARIationalIf this keyword is included, a variational calculation will be made, instead of using the default double harmonic approximation.
TRANsitionsIndicates the excitations to be printed in the output. Followed by the word FIRST on one line, then a list of numbers which are the number of phonons – the excitation level – to be distributed among the modes, defining the vibrational states of the first potential function (force field). Then similarly, after a line with the word SECOND, a list of excitation levels for the second state.
ENERgiesThe electronic T0 energies of the two states, each value is followed by either "eV" or "au".
GEOMetryGeometry input. Followed by keywords FILE, CARTESIAN, or INTERNAL. If FILE, the geometry input is taken from UNSYM1 and UNSYM2. If CARTESIAN or INTERNAL, two sections follow, one headed by a line with the word FIRST, the other with the word SECOND. For the CARTESIAN case, the following lines list the atoms and coordinates. On each line is an atom label, and the three coordinates (x,y,z). For the INTERNAL case, each line defines an internal coordinate in the same way as for keyword INTERNAL, and the value.
MXORderMaximum order of transition dipole expansion. Next line is 0, if the transition dipole is constant, 1 if it is a linear function, etc.
OSCStrIf this keyword is included, the oscillator strength, instead of the intensity, of the transitions will calculated.
BROAdplotGives the peaks in the spectrum plot an artificial halfwidth. The default lifetime is $130\cdot10^{-15}$ s but this can be changed with keyword LIFEtime followd by the value.
NANOmetersIf this keyword is included, the plot file will be in nanometers. Default is in eV.
CM-1If this keyword is included, the plot file will be in cm-1. Default is in eV.
PLOTEnter the limits (in eV, cm-1, or in nm) for the plot file.
VIBWriteIf this keyword is included, the vibrational levels of the two states will be printed in the output.
VIBPlotTwo files, plot.modes1 and plot.modes2, will be generated, with pictures of the normal vibrational modes of the two electronic states.
HUGElogThis keyword will give a much more detailed output file.
SCALeScales the Hessians, by multiplying with the scale factors following this keyword.
DIPOlesTransition dipole data. If MXORDER=0 (see above), there follows a single line with x,y,z components of the transition dipole moment. If MXORDER=1 there are an additional line for each cartesian coordinate of each atom, with the derivative of the transition dipole moment w.r.t. that nuclear coordinate.
NONLinearSpecifies non-linear variable substitutions to be used in the definition of potential surfaces.
POLYnomialGives the different terms to be included in the fit of the polynomial to the energy data.
DATAPotential energy surface data.

8.35.3.2 Input example



  &MULA

Title
  Water  molecule

Atoms
  O1
  H2
  H3
End  Atoms

Internal  Coordinates
  Bond  O1  H2
  Bond  O1  H3
  Angle  H3  O1  H2
End  Internal  Coordinates

MxLevels
  0  3

Energies
  First
  0.0  eV
  Second
  3.78  eV

Geometry
  Cartesian
  First
  O1  0.0000000000  0.0000000000  -0.5000000000
  H2  1.6000000000  0.0000000000  1.1000000000
  H3  -1.6000000000  0.0000000000  1.1000000000
  End
  Second
  O1  0.0000000000  0.0000000000  -0.4500000000
  H2  1.7000000000  0.0000000000  1.0000000000
  H3  -1.7000000000  0.0000000000  1.0000000000
  End

ForceField
  First  state
  Internal
  0.55  0.07  0.01
  0.07  0.55  0.01
  0.01  0.01  0.35
  Second  state
  Internal
  0.50  0.03  0.01
  0.03  0.50  0.01
  0.01  0.01  0.25

DIPOles
  0.20  0.20  1.20

BroadPlot
LifeTime
  10.0E-15

NANO
PlotWindow
  260  305

End  of  input



  &MULA

TITLe
  Benzene

ATOMs
  C1
  C2
  C3
  C4
  C5
  C6
  H1
  H2
  H3
  H4
  H5
  H6
End  of  Atoms

GEOMetry
  file

INTERNAL  COORDINATES
  Bond  C1  C3
  Bond  C3  C5
  Bond  C5  C2
  Bond  C2  C6
  Bond  C6  C4
  Bond  C1  H1
  Bond  C2  H2
  Bond  C3  H3
  Bond  C4  H4
  Bond  C5  H5
  Bond  C6  H6
  Angle  C1  C3  C5
  Angle  C3  C5  C2
  Angle  C5  C2  C6
  Angle  C2  C6  C4
  Angle  H1  C1  C4
  Angle  H2  C2  C5
  Angle  H3  C3  C1
  Angle  H4  C4  C6
  Angle  H5  C5  C3
  Angle  H6  C6  C2
  Torsion  C1  C3  C5  C2
  Torsion  C3  C5  C2  C6
  Torsion  C5  C2  C6  C4
  Torsion  H1  C1  C4  C6
  Torsion  H2  C2  C5  C3
  Torsion  H3  C3  C1  C4
  Torsion  H4  C4  C6  C2
  Torsion  H5  C5  C3  C1
  Torsion  H6  C6  C2  C5
END  INTERNAL  COORDINATES

VIBPLOT
  cyclic  4  1

ENERGIES
  First
  0.0  eV
  Second
  4.51  eV

MODES
  14  30  5  6  26  27  22  23  16  17  1  2  9  10
END

MXLE  -  MAXIMUM  LEVEL  of  excitation  (ground  state  -  excited  state)
  2  2

MXOR  -  MAXIMUM  ORDER  in  transition  dipole.
  1

OscStr

Transitions
  First
  0
  Second
  0  1  2

FORCEFIELD
  First
  file
  Second
  file

DIPOLES
  file


next up previous contents index
Next: 8.36 nemo Up: 8. Programs Previous: 8.34 MRCI