nextuppreviouscontents
MOLCAS manual:

Next: 10.5 Excited states. Up: 10. Examples Previous: 10.3 Computing a reaction


10.4 High quality wave functions at optimized structures

Here we will give an example of how geometrical structures obtained at one level of theory can be used in an analysis at high quality wave functions. Table [*] compiles the obtained CASSCF geometries for the dimethylcarbene to propene reaction (see Fig [*]). They can be compared to the MP2 geometries [224]. The overall agreement is good.

Figure 10.8: Dimethylcarbene to propene reaction path
\begin{figure}{---------------------------------------------------}\scalebox{0.75}{\myincludegraphics{advanced.examples/reaction}}
\end{figure}

The wave function at each of the geometries was proved to be almost a single configuration. The second configuration in all the cases contributed by less than 5% to the weight of the wave function. It is a double excited replacement. Therefore, although MP2 is not generally expected to describe properly a bond formation in this case its behavior seems to be validated. The larger discrepancies appear in the carbon-carbon distances in the dimethylcarbene and in the transition state. On one hand the basis set used in the present example were small; on the other hand there are indications that the MP2 method overestimates the hyper conjugation effects present in the dimethylcarbene [224]. Figure [*] displays the dimethylcarbene with indication of the employed labeling.

Figure 10.9: Dimethylcarbene atom labeling
\begin{figure}{---------------------------------------------------}\scalebox{1.00}{\myincludegraphics{advanced.examples/carbene}}
\end{figure}


Table 10.9: Bond distances (Å) and bond angles (deg) ofdimethylcarbene, propene, and their transition statea
  C1C3 C1C2 C2C1C3 C1C3H6 C2C1C3H6 C2H5 C1H5 C1C2H5 C3C1C2H5
                   
Dimethylcarbene
CASb 1.497 1.497 110.9 102.9 88.9 1.099   102.9 88.9
MP2c 1.480 1.480 110.3 98.0 85.5 1.106   98.0 85.5
                   
Transition structure
CASb 1.512 1.394 114.6 106.1 68.6 1.287 1.315 58.6 76.6
MP2c 1.509 1.402 112.3 105.1 69.2 1.251 1.326 59.6 77.7
                   
Propene
CASb 1.505 1.344 124.9 110.7 59.4        
MP2c 1.501 1.338 124.4 111.1 59.4        
                   
aC1, carbenoid center; C2, carbon which looses the hydrogen H5. See Figure [*].
bPresent results. CASSCF, ANO-S C 3s2p1d, H 2d1p. Two electrons in two orbitals.
cMP2 6-31G(2p,d), Ref. [224].

The main structural effects occurring during the reaction can be observed displayed in Table [*]. As the rearrangement starts out one hydrogen atom (H5) moves in a plane almost perpendicular to the plane formed by the three carbon atoms while the remaining two hydrogen atoms on the same methyl group swing very rapidly into a nearly planar position (see Figure [*] on page [*]). As the $\pi$ bond is formed we observe a contraction of the C1-C2 distance. In contrast, the spectator methyl group behaves as a rigid body. Their parameters were not compiled here but it rotates and bends slightly [224]. Focusing on the second half reaction, the moving hydrogen atom rotates into the plane of the carbon atoms to form the new C1-H5 bond. This movement is followed by a further shortening of the preformed C1-C2 bond, which acquires the bond distance of a typical double carbon bond, and smaller adjustments in the positions of the other atoms. The structures of the reactant, transition state, and product are shown in Figure [*].

As was already mentioned we will apply now higher-correlated methods for the reactant, product, and transition state system at the CASSCF optimized geometries to account for more accurate relative energies. In any case a small basis set has been used and therefore the goal is not to be extremely accurate. For more complete results see Ref. [224]. We are going to perform calculations with the MP2, MRCI, ACPF, CASPT2, CCSD, and CCSD(T) methods.

Starting with dimethylcarbene, we will use the following input file:



  &SEWARD  &END
Title
  Dimethylcarbene  singlet  C2-sym
  CASSCF(ANO-VDZP)  opt  geometry
Symmetry
  XY
Basis  set
C.ANO-S...3s2p1d.
C1  .0000000000  .0000000000  1.2019871414
C2  .0369055124  2.3301037548  -.4006974719
End  of  basis
Basis  set
H.ANO-S...2s1p.
H1  -.8322309260  2.1305589948  -2.2666729831
H2  -.7079699536  3.9796589218  .5772009623
H3  2.0671154914  2.6585385786  -.6954193494
End  of  basis
PkThrs
  1.0E-10
End  of  input

  &SCF  &END
Title
Dmc
Occupied
7  5
End  of  input

  &RASSCF  &END
Title
Dmc
Symmetry
  1
Spin
  1
Nactel
  2  0  0
Inactive
  6  5
Ras2
  1  1
Thrs
1.0E-05,1.0E-03,1.0E-03
Iteration
50,25
LumOrb
End  of  input

  &CASPT2  &END
Title
Dmc
LRoot
1
Frozen
  2  1
End  of  input

  &MOTRA  &END
Title
Dmc
Frozen
  2  1
JobIph
End  of  input

  &GUGA  &END
Title
Dmc
Electrons
18
Spin
  1
Inactive
  4  4
Active
  1  1
Ciall
  1
Print
  5
End  of  input

  &MRCI  &END
Title
Dimethylcarbene
SDCI
End  of  input

  &MRCI  &END
Title
Dimethylcarbene
ACPF
End  of  input

*  Now  we  generate  the  single  ref.  function
*  for  coupled-cluster  calculations

  &RASSCF  &END
Title
Dmc
Symmetry
  1
Spin
  1
Nactel
  0  0  0
Inactive
  7  5
Ras2
  0  0
Thrs
1.0E-05,1.0E-03,1.0E-03
Iteration
50,25
LumOrb
OutOrbitals
  Canonical
End  of  input

  &MOTRA  &END
Title
Dmc
Frozen
  2  1
JobIph
End  of  input

  &CCSDT  &END
Title
  Dmc
CCT
Iterations
  40
Triples
  2
End  of  input

Observe in the previous input that we have generated a multiconfigurational wave function for CASPT2, MRCI, and ACPF wave functions but a single configuration reference wave function (using RASSCF program with the options OUTOrbitals and CANOnical) for the CCSD and CCSD(T) wave functions. Notice also that to compute a multiconfigurational ACPF wave function we have to use the MRCI program, not the CPF module which does not accept more than one single reference. In all the highly correlated methods we have frozen the three carbon core orbitals because of the reasons already explained in section [*]. For MRCI, ACPF, CCSD, and CCSD(T) the freezing is performed in the MOTRA step.

One question that can be addressed is which is the proper reference space for the multiconfigurational calculations. As was explained when we selected the active space for the geometry optimizations, we performed several tests at different stages in the reaction path and observed that the smallest meaningful active space, two electrons in two orbitals, was sufficient in all the cases. We can come back to this problem here to select the reference for CASPT2, MRCI, and ACPF methods. The simple analysis of the SCF orbital energies shows that in dimethylcarbene, for instance, the orbital energies of the C-H bonds are close to those of the C-C $\sigma$ bonds and additionally those orbitals are strongly mixed along the reaction path. A balanced active space including all orbitals necessary to describe the shifting H-atom properly would require a full valence space of 18 electrons in 18 orbitals. This is not a feasible space, therefore we proceed with the minimal active space and analyze later the quality of the results. The CASSCF wave function will then include for dimethylcarbene and the transition state structure the ($\sigma$)2($\pi$)0 and ($\sigma$)0($\pi$)2 configurations correlating the non-bonded electrons localized at the carbenoid center where as for propene the active space include the equivalent valence $\pi$ space.

The GUGA input must be built carefully. There are several ways to specify the reference configurations for the following methods. First, the keyword ELECtrons refers to the total number of electrons that are going to be correlated, that is, all except those frozen in the previous MOTRA step. Keywords INACtive and ACTIve are optional and describe the number of inactive (occupation two in all the reference configurations) and active (varying occupation number in the reference configurations) orbitals of the space. Here ACTIve indicates one orbital of each of the symmetries. The following keyword CIALl indicates that the reference space will be the full CI within the subspace of active orbitals. It must be always followed by symmetry index (number of the irrep) for the resulting wave function, one here.

For the transition state structure we do not impose any symmetry restriction, therefore the calculations are performed in the C1 group with the input file:



  &SEWARD  &END
Title
  Dimethylcarbene  to  propene
  Transition  State  C1  symmetry
  CASSCF  (ANO-VDZP)  opt  geometry
Basis  set
C.ANO-S...3s2p1d.
End  of  basis
Basis  set
H.ANO-S...2s1p.
End  of  basis
PkThrs
  1.0E-10
End  of  input

  &SCF  &END
Title
  Ts
Occupied
  12
End  of  input

  &MBPT2  &END
Title
  Ts
Frozen
  3
End  of  input

  &RASSCF  &END
Title
  Ts
Symmetry
  1
Spin
  1
Nactel
  2  0  0
Inactive
  11
Ras2
  2
Iteration
50,25
LumOrb
End  of  input

  &CASPT2  &END
Title
  Ts
LRoot
  1
Frozen
  3
End  of  input

  &MOTRA  &END
Title
  Ts
Frozen
  3
JobIph
End  of  input

  &GUGA  &END
Title
  Ts
Electrons
  18
Spin
  1
Inactive
  8
Active
  2
Ciall
  1
Print
  5
End  of  input

  &MRCI  &END
Title
  Ts
SDCI
End  of  input

  &MRCI  &END
Title
  Ts
ACPF
End  of  input

  &RASSCF  &END
Title
  Ts
Symmetry
  1
Spin
  1
Nactel
  0  0  0
Inactive
  12
Ras2
  0
Iteration
50,25
LumOrb
OutOrbitals
  Canonical
End  of  input

  &MOTRA  &END
Title
  Ts
Frozen
  3
JobIph
End  of  input

  &CCSDT  &END
Title
  Ts
CCT
Iterations
  40
Triples
  2
End  of  input

Finally we compute the wave functions for the product, propene, in the Cs symmetry group with the input:



  &SEWARD  &END
Title
  Propene  singlet  Cs-sym
  CASSCF(ANO-VDZP)  opt  geometry
Symmetry
  Z
Basis  set
C.ANO-S...3s2p1d.
C1  -2.4150580342  .2276105054  .0000000000
C2  .0418519070  .8733601069  .0000000000
C3  2.2070668305  -.9719171861  .0000000000
End  of  basis
Basis  set
H.ANO-S...2s1p.
H1  -3.0022907382  -1.7332097498  .0000000000
H2  -3.8884900111  1.6454331428  .0000000000
H3  .5407865292  2.8637419734  .0000000000
H4  1.5296107561  -2.9154199848  .0000000000
H5  3.3992878183  -.6985812202  1.6621549148
End  of  basis
PkThrs
  1.0E-10
End  of  input

  &SCF  &END
Title
Propene
Occupied
10  2
End  of  input

  &MBPT2  &END
Title
  Propene
Frozen
  3  0
End  of  input

  &RASSCF  &END
Title
Propene
Symmetry
1
Spin
1
Nactel
  2  0  0
Inactive
10  1
Ras2
  0  2
Thrs
1.0E-05,1.0E-03,1.0E-03
Iteration
50,25
LumOrb
End  of  input

  &CASPT2  &END
Title
Propene
LRoot
1
Frozen
  3  0
End  of  input

  &MOTRA  &END
Title
Propene
Frozen
  3  0
JobIph
End  of  input

  &GUGA  &END
Title
Propene
Electrons
18
Spin
  1
Inactive
  7  1
Active
  0  2
Ciall
  1
Print
  5
End  of  input

  &MRCI  &END
Title
Propene
SDCI
End  of  input

  &MRCI  &END
Title
Propene
ACPF
End  of  input

  &RASSCF  &END
Title
Propene
Symmetry
1
Spin
1
Nactel
  0  0  0
Inactive
10  2
Ras2
  0  0
Thrs
1.0E-05,1.0E-03,1.0E-03
Iteration
50,25
LumOrb
OutOrbitals
  Canonical
End  of  input

  &MOTRA  &END
Title
Propene
Frozen
  3  0
JobIph
End  of  input

  &CCSDT  &END
Title
  Propene
CCT
Iterations
  40
Triples
  2
End  of  input

Table [*] compiles the total and relative energies obtained for the studied reaction at the different levels of theory employed.


Table 10.10: Total (au) and relative (Kcal/mol, in braces) energies obtained at the differenttheory levels for the reaction path from dimethylcarbene to propene
Single configurational methods
         
method RHF MP2 CCSD CCSD(T)
         
Dimethylcarbene
         
  -117.001170 -117.392130 -117.442422 -117.455788
         
Transition state structure
         
  -116.972670 -117.381342 -117.424088 -117.439239
BHa (17.88) (6.77) (11.50) (10.38)
         
Propene
         
  -117.094700 -117.504053 -117.545133 -117.559729
EXb (-58.69) (-70.23) (-64.45) (-65.22)
         
         
Multiconfigurational methods
         
method CASSCF CASPT2 SD-MRCI+Q ACPF
         
Dimethylcarbene
         
  -117.020462 -117.398025 -117.447395 -117.448813
         
Transition state structure
         
  -116.988419 -117.383017 -117.430951 -117.432554
BHa (20.11) (9.42) (10.32) (10.20)
         
Propene
         
  -117.122264 -117.506315 -117.554048 -117.554874
EXb (-63.88) (-67.95) (-66.93) (-66.55)
         
aBarrier height. Needs to be corrected with the zero point vibrational correction.
bExothermicity. Needs to be corrected with the zero point vibrational correction.

We can discuss now the quality of the results obtained and their reliability (for a more careful discussion of the accuracy of quantum chemical calculations see Ref. [212]). In first place we have to consider that a valence double-zeta plus polarization basis set is somewhat small to obtain accurate results. At least a triple-zeta quality would be required. The present results have, however, the goal to serve as an example. We already pointed out that the CASSCF geometries were very similar to the MP2 reported geometries [224]. This fact validates both methods. MP2 provides remarkably accurate geometries using basis sets of triple-zeta quality, as in Ref. [224], in situations were the systems can be described as singly configurational, as the CASSCF calculations show. The Hartree-Fock configuration has a contribution of more than 95% in all three structures, while the largest weight for another configuration appears in propene for ($\pi$)0($\pi^*$)2 (4.2%).

The MRCI calculations provide also one test of the validity of the reference wave function. For instance, the MRCI output for propene is:



FINAL RESULTS FOR STATE NR 1
CORRESPONDING ROOT OF REFERENCE CI IS NR: 1
REFERENCE CI ENERGY: -117.12226386
EXTRA-REFERENCE WEIGHT: .11847074
CI CORRELATION ENERGY: -.38063043
CI ENERGY: -117.50289429
DAVIDSON CORRECTION: -.05115380
CORRECTED ENERGY: -117.55404809
ACPF CORRECTION: -.04480105
CORRECTED ENERGY: -117.54769535

CI-COEFFICIENTS LARGER THAN .050
NOTE: THE FOLLOWING ORBITALS WERE FROZEN
ALREADY AT THE INTEGRAL TRANSFORMATION STEP
AND DO NOT EXPLICITLY APPEAR:
SYMMETRY: 1 2
PRE-FROZEN: 3 0
ORDER OF SPIN-COUPLING: (PRE-FROZEN, NOT SHOWN)
(FROZEN, NOT SHOWN)
VIRTUAL
ADDED VALENCE
INACTIVE
ACTIVE

ORBITALS ARE NUMBERED WITHIN EACH SEPARATE SYMMETRY.


CONFIGURATION 32 COEFFICIENT -.165909 REFERENCE
SYMMETRY 1 1 1 1 1 1 1 2 2 2
ORBITALS 4 5 6 7 8 9 10 1 2 3
OCCUPATION 2 2 2 2 2 2 2 2 0 2
SPIN-COUPLING 3 3 3 3 3 3 3 3 0 3


CONFIGURATION 33 COEFFICIENT -.000370 REFERENCE
SYMMETRY 1 1 1 1 1 1 1 2 2 2
ORBITALS 4 5 6 7 8 9 10 1 2 3
OCCUPATION 2 2 2 2 2 2 2 2 1 1
SPIN-COUPLING 3 3 3 3 3 3 3 3 1 2

CONFIGURATION 34 COEFFICIENT .924123 REFERENCE
SYMMETRY 1 1 1 1 1 1 1 2 2 2
ORBITALS 4 5 6 7 8 9 10 1 2 3
OCCUPATION 2 2 2 2 2 2 2 2 2 0
SPIN-COUPLING 3 3 3 3 3 3 3 3 3 0
**************************************************************

The Hartree-Fock configuration contributes to the MRCI configuration with a weight of 85.4%, while the next configuration contributes by 2.8%. Similar conclusions can be obtained analyzing the ACPF results and for the other structures. We will keep the MRCI results including the Davidson correction (MRCI+Q) which corrects for the size-inconsistency of the truncated CI expansion [212].

For CASPT2 the evaluation criteria were already commented in section [*]. The portion of the CASPT2 output for propene is:



Reference energy: -117.1222638304
E2 (Non-variational): -.3851719971
E2 (Variational): -.3840516039
Total energy: -117.5063154343
Residual norm: .0000000000
Reference weight: .87905

Contributions to the CASPT2 correlation energy
Active & Virtual Only: -.0057016698
One Inactive Excited: -.0828133881
Two Inactive Excited: -.2966569393


----------------------------------------------------------------------------
Report on small energy denominators, large components, and large energy contributions.
The ACTIVE-MIX index denotes linear combinations which gives ON expansion functions
and makes H0 diagonal within type.
DENOMINATOR: The (H0_ii - E0) value from the above-mentioned diagonal approximation.
RHS value: Right-Hand Side of CASPT2 Eqs.
COEFFICIENT: Multiplies each of the above ON terms in the first-order wave function.
Thresholds used:
Denominators: .3000
Components: .0250
Energy contributions: .0050

CASE SYMM ACTIVE NON-ACT IND DENOMINATOR RHS VALUE COEFFICIENT CONTRIBUTION
AIVX 1 Mu1.0003 In1.004 Se1.022 2.28926570 .05988708 -.02615995 -.00156664

The weight of the CASSCF reference to the first-order wave function is here 87.9%, very close to the weights obtained for the dimethylcarbene and the transition state structure, and there is only a small contribution to the wave function and energy which is larger than the selected thresholds. This should not be considered as a intruder state, but as a contribution from the fourth inactive orbital which could be, eventually, included in the active space. The contribution to the second-order energy in this case is smaller than 1 Kcal/mol. It can be observed that the same contribution shows up for the transition state structure but not for the dimethylcarbene. In principle this could be an indication that a larger active space, that is, four electrons in four orbitals, would give a slightly more accurate CASPT2 energy. The present results will probably overestimate the second-order energies for the transition state structure and the propene, leading to a slightly smaller activation barrier and a slightly larger exothermicity, as can be observed in Table [*]. The orbitals pointed out as responsible for the large contributions in propene are the fourth inactive and 22nd secondary orbitals of the first symmetry. They are too deep and too high, respectively, to expect that an increase in the active space could in fact represent a great improvement in the CASPT2 result. In any case we tested for four orbitals-four electrons CASSCF/CASPT2 calculations and the results were very similar to those presented here.

Finally we can analyze the so-called $\tau_1$-diagnostic [225] for the coupled-cluster wave functions. $\tau_1$ is defined for closed-shell coupled-cluster methods as the Euclidean norm of the vector of T1 amplitudes normalized by the number of electrons correlated: $\tau_1 = \vert\vert T_1\vert\vert/N_{el}^{1/2}$. In the output of the CCSD program we have:



Convergence after 17 Iterations


Total energy (diff) : -117.54513288 -.00000061
Correlation energy : -.45043295
E1aa contribution : .00000000
E1bb contribution : .00000000
E2aaaa contribution : -.04300448
E2bbbb contribution : -.04300448
E2abab contribution : -.36442400


Five largest amplitudes of :T1aa
SYMA SYMB SYMI SYMJ A B I J VALUE
2 0 2 0 4 0 2 0 -.0149364994
2 0 2 0 2 0 2 0 .0132231037
2 0 2 0 8 0 2 0 -.0104167047
2 0 2 0 7 0 2 0 -.0103366543
2 0 2 0 1 0 2 0 .0077537734
Euclidean norm is : .0403635306

Five largest amplitudes of :T1bb
SYMA SYMB SYMI SYMJ A B I J VALUE
2 0 2 0 4 0 2 0 -.0149364994
2 0 2 0 2 0 2 0 .0132231037
2 0 2 0 8 0 2 0 -.0104167047
2 0 2 0 7 0 2 0 -.0103366543
2 0 2 0 1 0 2 0 .0077537734
Euclidean norm is : .0403635306

In this case T1aa and T1bb are identical because we are computing a closed-shell singlet state. The five largest T1 amplitudes are printed, as well as the Euclidean norm. Here the number of correlated electrons is 18, therefore the value for the $\tau_1$ diagnostic is 0.01. This value can be considered acceptable as evaluation of the quality of the calculation. The use of $\tau_1$ as a diagnostic is based on an observed empirical correlation: larger values give poor CCSD results for molecular structures, binding energies, and vibrational frequencies [226]. It was considered that values larger than 0.02 indicated that results from single-reference electron correlation methods limited to single and double excitations should be viewed with caution.

There are several considerations concerning the $\tau_1$ diagnostic [225]. First, it is only valid within the frozen core approximation and it was defined for coupled-cluster procedures using SCF molecular orbitals in the reference function. Second, it is a measure of the importance of non-dynamical electron correlation effects and not of the degree of the multireference effects. Sometimes the two effects are related, but not always (see discussion in Ref. [226]). Finally, the performance of the CCSD(T) method is reasonably good even in situations where $\tau_1$ has a value as large as 0.08. In conclusion, the use of $\tau_1$ together with other wave function analysis, such as explicitly examining the largest T1 and T2 amplitudes, is the best approach to evaluate the quality of the calculations but this must be done with extreme caution.

As the present systems are reasonably well described by a single determinant reference function there is no doubt that the CCSD(T) method provides the most accurate results. Here CASPT2, MRCI+Q, ACPF, and CCSD(T) predict the barrier height from the reactant to the transition state with an accuracy better than 1 Kcal/mol. The correspondence is somewhat worse, about 3 Kcal/mol, for the exothermicity. As the difference is largest for the CCSD(T) method we may conclude than triple and higher order excitations are of importance to achieve a balanced correlation treatment, in particular with respect to the partially occupied $\pi^*$ orbital at the carbenoid center. It is also noticeable that the relative MP2 energies appear to be shifted about 3-4 Kcal/mol towards lower values. This effect may be due to the overestimation of the hyper-conjugation effect which appears to be strongest in dimethylcarbene [227,224].

Additional factors affecting the accuracy of the results obtained are the zero point vibrational energy correction and, of course, the saturation of the one particle basis sets. The zero point vibrational correction could be computed by performing a numerical harmonic vibrational analysis at the CASSCF level using MOLCAS. At the MP2 level [224] the obtained values were -1.1 Kcal/mol and 2.4 Kcal/mol for the activation barrier height and exothermicity, respectively. Therefore, if we take as our best values the CCSD(T) results of 10.4 and -65.2 Kcal/mol, respectively, our prediction would be an activation barrier height of 9.3 Kcal/mol and an exothermicity of -62.8 Kcal/mol. Calculations with larger basis sets and MP2 geometries gave 7.4 and -66.2 Kcal/mol, respectively [224]. The experimental estimation gives a lower limit to the activation barrier of 3.3 Kcal/mol [224].

MOLCAS provides also a number of one-electron properties which can be useful to analyze the chemical behavior of the systems. For instance, the Mulliken population analysis is available for the RHF, CASSCF, CASPT2, MRCI, and ACPF wave functions. Mulliken charges are known to be strongly biased by the choice of the basis sets, nevertheless one can restrict the analysis to the relative charge differences during the course of the reaction to obtain a qualitative picture. We can use, for instance, the charge distribution obtained for the MRCI wave function, which is listed in Table [*]. Take into account that the absolute values of the charges can vary with the change of basis set.


Table 10.11: Mulliken's population analysis (partial charges) for the reaction path from dimethylcarbene to propene. MRCI wave functions.
  C2a C1b H5c $\Sigma^d$ H1+H3e Mef  
Dimethylcarbene
  -0.12 -0.13 0.05 -0.20 0.14 0.07  
Transition state structure
  -0.02 -0.23 0.05 -0.20 0.17 0.02  
Propene
  -0.18 -0.02 0.05 -0.15 0.18 -0.02  
aCarbon from which the hydrogen is withdrawn.
bCentral carbenoid carbon.
cMigrating hydrogen.
dSum of charges for centers C2, C1, and H5.
eSum of charges for the remaining hydrogens attached to C2.
fSum of charges for the spectator methyl group.

In dimethylcarbene both the medium and terminal carbons appear equally charged. During the migration of hydrogen H5 charge flows from the hydrogen donating carbon, C2, to the carbenoid center. For the second half of the reaction the charge flows back to the terminal carbon from the centered carbon, probably due to the effect of the $\pi$ delocalization.


next up previous contents
Next: 10.5 Excited states. Up: 10. Examples Previous: 10.3 Computing a reaction