nextuppreviouscontentsindex
MOLCAS manual:

Next: Bibliography Up: 10. Examples Previous: 10.8 Extra information about

Subsections



10.9 Core and Embedding Potentials within the SEWARD Program

8.2 is able to perform effective core potential (ECP) and embedded cluster (EC) calculations. In ECP calculations [271,272] the core electrons of a molecule are kept frozen and represented by a set of atomic effective potentials, while only the valence electrons are explicitly handled in the quantum mechanical calculation. In EC calculations only the electrons assigned to a piece of the whole system, the cluster, are explicitly treated in a quantum mechanical calculation, while the rest of the whole system, the environment, is kept frozen and represented by embedding potentials which act onto the cluster. For an explanation of the type of potentials and approaches used in MOLCAS the reader is referred to the section [*] of the user's guide.

To use such type of effective potentials implies to compute a set of atomic integrals and therefore involves only the SEWARD program. The remaining MOLCAS programs will simply use the integrals in the standard way and no indication of the use of ECP will appear in the outputs further on; the difference is of course that the absolute energies obtained for the different methods are not comparable to those obtained in an all-electron calculation. Therefore, the only input required to use ECP or EC is the SEWARD input, according to the examples given below. In the input files of the subsequent MOLCAS programs the orbitals corresponding to the excluded core orbitals should of course not be included, and not the excluded electrons.

10.9.1 seward input for Effective Core Potential calculations

Astatine (At) is the atomic element number 85 which has the main configuration in its electronic ground state: [core] 6s2 5d10 6p5. In the core 68 electrons are included, corresponding to the xenon configuration plus the 4f14 lantanide shell. To perform an ECP calculation in a molecular system containing At it is necessary to specify which type of effective potential will substitute the core electrons and which valence basis set will complement it. Although the core ECP's (strictly AIMP's, see section [*] of the user's guide) can be safely mixed together with all-electron basis set, the valence basis sets included in the MOLCAS AIMP library have been explicitly optimized to complement the AIMP potentials.

The file ECP in the MOLCAS directory $MOLCAS/basis_library contains the list of available core potentials and valence basis sets. Both the relativistic (CG-AIMP's) and the nonrelativistic (NR-AIMP's) potentials are included. As an example, this is the head of the entry corresponding to the relativistic ECP for At:



/At.ECP.Barandiaran.13s12p8d5f.1s1p2d1f.17e-CG-AIMP.
Z.Barandiaran, L.Seijo, J.Chem.Phys. 101(1994)4049; L.S. JCP 102(1995)8078.
core[Xe,4f] val[5d,6s,6p] SO-corr (11,1,1/9111/611*/4o1)=3s4p3d2f recommended
*
* - spin-orbit basis set correction from
* L.Seijo, JCP 102(1995)8078.
*
* - (5o) f orthogonality function is the 4f core orbital
*
*ATQR-DSP(A3/A2/71/5)-SO (A111/9111/611/41)

The first line is the label line written in the usual SEWARD format: element symbol, basis label, first author, size of the primitive set, size of the contracted set (in both cases referred to the valence basis set), and type of ECP used. In this case there are 17 valence electrons and the effective potential is a Cowan-Griffin-relativistic core AIMP. The number of primitive functions for the valence basis set (13s12p8d5f here) will split into different subsets (within a segmented contraction scheme) according to the number of contracted functions. In the library, the contracted basis functions have been set to the minimal basis size: 1s1p2d1f for the valence electrons in At. This means the following partition: 1s contracted function including 13 primitive functions; 1p contracted function including 12 primitive functions; 2d contracted functions, the first one containing seven primitive functions and the second one primitive function (see the library), and finally 1f contracted function containing five primitive functions.

In the SEWARD input the user can modify the contraction scheme simply varying the number of contracted functions. There is a recommended size for the valence basis set which is printed in the third line for each atom entry on the library: 3s4p3d2f for At. For example, the simplest way to include the atom core potential and valence basis set in the SEWARD input would be:



At.ECP...3s4p3d2f.17e-CG-AIMP.

This means a partition for the valence basis set as showed in figure [*].

Figure 10.14: Partition of a valence basis set using the ECP's library
\begin{figure}{---------------------------------------------------}\end{figure}


Basis set:AT.ECP...3S4P3D2F.17E-CG-AIMP.

Type
s
No. Exponent Contraction Coefficients
1 .133037396D+07 -.000154 .000000 .000000
2 .993126141D+05 -.001030 .000000 .000000
3 .128814005D+05 -.005278 .000000 .000000
4 .247485916D+04 -.014124 .000000 .000000
5 .214733934D+03 .069168 .000000 .000000
6 .111579706D+03 .020375 .000000 .000000
7 .370830653D+02 -.259246 .000000 .000000
8 .113961072D+02 .055751 .000000 .000000
9 .709430236D+01 .649870 .000000 .000000
10 .448517638D+01 -.204733 .000000 .000000
11 .157439587D+01 -.924035 .000000 .000000
12 .276339384D+00 .000000 1.000000 .000000
13 .108928284D+00 .000000 .000000 1.000000

Type
p
No. Exponent Contraction Coefficients
14 .608157825D+04 .000747 .000000 .000000 .000000
15 .128559298D+04 .009304 .000000 .000000 .000000
16 .377428675D+03 .026201 .000000 .000000 .000000
17 .552551834D+02 -.087130 .000000 .000000 .000000
18 .233740022D+02 -.044778 .000000 .000000 .000000
19 .152762905D+02 .108761 .000000 .000000 .000000
20 .838467359D+01 .167650 .000000 .000000 .000000
21 .234820847D+01 -.290968 .000000 .000000 .000000
22 .119926577D+01 -.237719 .000000 .000000 .000000
23 .389521915D+00 .000000 1.000000 .000000 .000000
24 .170352883D+00 .000000 .000000 1.000000 .000000
25 .680660800D-01 .000000 .000000 .000000 1.000000

Type
d
No. Exponent Contraction Coefficients
26 .782389711D+03 .007926 .000000 .000000
27 .225872717D+03 .048785 .000000 .000000
28 .821302011D+02 .109617 .000000 .000000
29 .173902999D+02 -.139021 .000000 .000000
30 .104111329D+02 -.241043 .000000 .000000
31 .195037661D+01 .646388 .000000 .000000
32 .689437556D+00 .000000 1.000000 .000000
33 .225000000D+00 .000000 .000000 1.000000

Type
f
No. Exponent Contraction Coefficients
34 .115100000D+03 .065463 .000000
35 .383200000D+02 .270118 .000000
36 .151600000D+02 .468472 .000000
37 .622900000D+01 .387073 .000000
38 .242100000D+01 .000000 1.000000

Therefore, the primitive set will always be split following the scheme: the first contracted function will contain the total number of primitives minus the number of remaining contracted functions and each of the remaining contracted functions will contain one single uncontracted primitive function. In the present example possible contraction patterns are: contracted 1s1p2d1f (13/12/8,1/5 primitives per contracted function, respectively), 2s2p3d2f (12,1/11,1/7,1,1/4,1), 3s3p4d2f (11,1,1/10,1,1/6,1,1,1/4,1), etc. Any other scheme which cannot be generated in this way must be included in the input using the Inline format for basis sets or an additional user's library. When the Inline option is used both the valence basis set and the AIMP potential must be included in the input, as it will be shown in the next section.

For an explanation of the remaining items in the library the reader is referred to the section [*] of the user's guide.

Figure [*] contains the sample input required to compute the SCF wave function for the astatine hydride molecule at an internuclear distance of 3.2 au. The Cowan-Griffin-relativistic core-AIMP has been used for the At atom with a size for the valence basis set recommended in the ECP library: 3s4p3d2f.

Figure 10.15: Sample input required by SEWARD and SCF programs to compute the SCF wave function of HAt using a relativistic ECP
\begin{figure}{---------------------------------------------------}\end{figure}



  &GATEWAY
Title
HAt  molecule  using  17e-Cowan-Griffin-relativistic  core-AIMP
coord
2
coordinates  in  bohr
At  0  0  0
H  0  0  3.2
group
X  Y
Basis  set
H.ano-l-vtzp
Basis  set
At.ECP...3s4p3d2f.17e-CG-AIMP.
  &SEWARD
  &SCF
Title
  HAt  g.s.  (At-val=5d,6s,6p)
Occupied
  4  2  2  1

10.9.2 seward input for Embedded Cluster calculations

To perform embedded cluster (EC) calculations requires certain degree of experience and therefore the reader is referred to the literature quoted in section [*] of the user's guide. On the following a detailed example is however presented. It corresponds to EC calculations useful for local properties associated to a Tl+ impurity in KMgF3. First, a cluster must be specified. This is the piece of the system which is explicitly treated by the quantum mechanical calculation. In the present example the cluster will be formed by the unit (TlF12)11-. A flexible basis for the cluster must be determined. Figure [*] contains the basis set selection for the thallium and fluorine atoms. In this case ECP-type basis sets have been selected. For Tl a valence basis set of size 3s4p4d2f has been used combined with the relativistic core-AIMP potentials as they appear in the ECP library. For the F atom the valence basis set has been modified from that appearing in the ECP library. In this case the exponent of the p-diffuse function and the p contraction coefficients of the F basis set have been optimized in calculations on the fluorine anion included in the specific lattice in order to obtain a more flexible description of the anion. This basis set must be introduced Inline, and then also the ECP potential must be added to the input. The user can compare the basis set and ECP for F in figure [*] with the entry of ECP under /F.ECP.Huzinaga.5s6p1d.1s2p1d.7e-NR-AIMP. The entry for the Inline format must finish with the line End of Spectral Representation Operator.

Once the cluster has been defined it is necessary to represent the embedding lattice. Presently, MOLCAS includes embedding potentials for ions of several elpasolites, fluoro-perovskites, rocksalt structure oxides and halides, and fluorites. The embedding potentials for any other structure can be included in the input using the Inline format or included in a private user library. In the selected example a fluoro-perovskite lattice has been selected: KMgF3. Here, the Tl+ impurity substitutes a K+ ion in an Oh site with 12 coordination. The first coordination shell of fluorine ions has been included into the cluster structure and the interactions to the Tl atom will be computed by quantum mechanical methods. The rest of the lattice will be represented by the structure KMgF3 with five shells of ions at experimental sites. The shells have been divided in two types. Those shells closer to the cluster are included as embedding potentials from the library ECP. For example the potassium centers will use the entry on figure [*].

Figure 10.16: Sample input for an embedded core potential for a shell of potassium cations
\begin{figure}{---------------------------------------------------}\end{figure}


Basis  set
K.ECP..0s.0s.0e-AIMP-KMgF3.
PSEUdocharge
K2-1  0.0000000000  0.0000000000  7.5078420000
K2-2  0.0000000000  7.5078420000  0.0000000000
K2-3  0.0000000000  7.5078420000  7.5078420000
K2-4  7.5078420000  0.0000000000  0.0000000000
K2-5  7.5078420000  0.0000000000  7.5078420000
K2-6  7.5078420000  7.5078420000  0.0000000000
K2-7  7.5078420000  7.5078420000  7.5078420000
End  Of  Basis

No basis set is employed to represent the potassium centers on figure [*], which just act as potentials embedding the cluster. The keyword PSEUdocharge ensures that the interaction energy between the embedding potentials is not included in the ``Nuclear repulsion energy" and that their location is not varied in a geometry optimization (SLAPAF). The first shells of Mg+2 and F- will be introduced in the same way.

The remaining ions of the lattice will be treated as point charges. To add a point charge on the SEWARD input it is possible to proceed in two ways. One possibility is to employ the usual label to introduce an atom with its basis functions set to zero and the keyword CHARge set to the value desired for the charge of the center. This way of introducing point charges must not be used when geometry optimizations with the SLAPAF program is going to be performed because SLAPAF will recognize the point charges as atoms whose positions should be optimized. Instead the keyword XFIEld can be used as it is illustrated in figure [*]. XFIEld must be followed by a line containing the number of point charges, and by subsequent lines containing the cartesian coordinates and the introduced charge or the three components of the dipole moment at the specified geometry. In any case the seven positions in each line must be fulfilled. To ensure the neutral character of the whole system the point charges placed on the terminal edges, corners or faces of the lattice must have the proper fractional values.

Figure [*] contains the complete sample input to perform a SCF energy calculation on the system (TlF12)11-:KMgF3.

Figure 10.17: Sample input for a SCF geometry optimization of the (TlF12)11-:KMgF3 system
\begin{figure}{---------------------------------------------------}\end{figure}


  &GATEWAY
Title
|  Test  run  TlF12:KMgF3.1  |
|**  Molecule  **  (TlF12)11-  cluster  embedded  in  a  lattice  of  KMgF3  |
|**  Basis  set  and  ECP  **  |
|  *  Tl  *  (11,1,1/9,1,1,1/5,1,1,1/4,1)  from  ECP  |
|  13e-Cowan-Griffin-relativistic  core-AIMP  from  ECP  |
|  *  F  *  (4,1/4,1,1)  diffuse-p  optimized  in  KMgF3:F(-)  inline|
|  7e-nonrelativistic  core-AIMP  inline|
|  KMgF3  embedding-AIMPs  from  ECP  |
|**  cluster  geometry  **  r(Tl-F)/b=  5.444  =  3.84948932  *  sqrt(2)  |
|**  lattice  **  (perovskite  structure)  5  shells  of  ions  at  experimental  sites  |
Symmetry
X  Y  Z

Basis  set
Tl.ECP.Barandiaran.13s12p8d5f.3s4p4d2f.13e-CG-AIMP.
Tl  0.00000  0.00000  0.00000
End  Of  Basis

Basis  set
F.ECP....  /  Inline
*  basis  set  and  core-AIMP  as  in:  F.ECP.Huzinaga.5s6p1d.2s4p1d.7e-NR-AIMP.
*  except  that  the  p-diffuse  and  the  p  contraction  coeffs.  have  been
*  optimized  in  KMgF3-embedded  F(-)  scf  calculations.
  7.000000  1
  5  2
  405.4771610
  61.23686380
  13.47117730
  1.095173720
  .3400847530
  -.013805187800  .000000000000
  -.089245064800  .000000000000
  -.247937861000  .000000000000
  .632895340000  .000000000000
  .000000000000  .465026336000
  6  3
  44.13600920
  9.982597110
  2.947082680
  .9185111850
  .2685213550
  .142
  .015323038700  .000000000000  .000000000000
  .095384703000  .000000000000  .000000000000
  .291214218000  .000000000000  .000000000000
  .441351868000  .000000000000  .000000000000
  .000000000000  .427012588000  .000000000000
  .000000000000  .000000000000  1.000000000000
*
*  Core  AIMP:  F-1S
*
*  Local  Potential  Paramenters  :  (ECP  convention)
*  A(AIMP)=-Zeff*A(ECP)
M1
  7
  279347.4000
  31889.74900
  5649.977600
  1169.273000
  269.0513200
  71.29884600
  22.12150700

  .004654725000
  .007196816857
  .015371258571
  .032771900000
  .070383742857
  .108683807143
  .046652035714
M2
  0
COREREP
  1.0
PROJOP
  0
  14  1
  52.7654040
  210965.4100
  31872.59200
  7315.837400
  2077.215300
  669.9991000
  232.1363900
  84.99573000
  32.90124100
  13.36331800
  5.588141500
  2.319058700
  .9500928100
  .3825419200
  .1478404000
  .000025861368
  .000198149380
  .001031418900
  .004341016600
  .016073698000
  .053856655000
  .151324390000
  .318558040000
  .404070310000
  .190635320000
  .011728993000
  .002954046500
  -.000536098280
  .000278474090
*
Spectral  Representation  Operator
Valence  primitive  basis
Exchange
End  of  Spectral  Representation  Operator
F_1  3.849489320  3.849489320  .000000000
F_2  .000000000  3.849489320  3.849489320
F_3  3.849489320  .000000000  3.849489320
*  3*4  =  12
End  Of  Basis

*  end  of  cluster  data:  TlF12

*  beginning  of  lattice  embedding  data:  KMgF3

Basis  set
K.ECP.Lopez-Moraza.0s.0s.0e-AIMP-KMgF3.
pseudocharge
*  K(+)  ions  as  embedding  AIMPs
K2-1  0.0000000000  0.0000000000  7.5078420000
K2-2  0.0000000000  7.5078420000  0.0000000000
K2-3  0.0000000000  7.5078420000  7.5078420000
K2-4  7.5078420000  0.0000000000  0.0000000000
K2-5  7.5078420000  0.0000000000  7.5078420000
K2-6  7.5078420000  7.5078420000  0.0000000000
K2-7  7.5078420000  7.5078420000  7.5078420000
*  3*2  +  3*4  +  1*8  =  26
End  Of  Basis

Basis  set
Mg.ECP.Lopez-Moraza.0s.0s.0e-AIMP-KMgF3.
pseudocharge
*  Mg(2+)  ions  as  embedding  AIMPs
MG1-1  3.7539210000  3.7539210000  3.7539210000
MG3-1  3.7539210000  3.7539210000  11.2617630000
MG3-2  3.7539210000  11.2617630000  3.7539210000
MG3-3  3.7539210000  11.2617630000  11.2617630000
MG3-4  11.2617630000  3.7539210000  3.7539210000
MG3-5  11.2617630000  3.7539210000  11.2617630000
MG3-6  11.2617630000  11.2617630000  3.7539210000
MG3-7  11.2617630000  11.2617630000  11.2617630000
*  8*8  =  64
End  Of  Basis

Basis  set
F.ECP.Lopez-Moraza.0s.0s.0e-AIMP-KMgF3.
pseudocharge
*  F(-)  ions  as  embedding  AIMPs
F2-1  3.7539210000  3.7539210000  7.5078420000
F2-2  3.7539210000  7.5078420000  3.7539210000
F2-3  7.5078420000  3.7539210000  3.7539210000
F3-1  0.0000000000  3.7539210000  11.2617630000
F3-2  3.7539210000  0.0000000000  11.2617630000
F3-3  3.7539210000  11.2617630000  0.0000000000
F3-4  0.0000000000  11.2617630000  3.7539210000
F3-5  3.7539210000  11.2617630000  7.5078420000
F3-6  0.0000000000  11.2617630000  11.2617630000
F3-7  3.7539210000  7.5078420000  11.2617630000
F3-8  11.2617630000  3.7539210000  0.0000000000
F3-9  11.2617630000  0.0000000000  3.7539210000
F3-10  11.2617630000  3.7539210000  7.5078420000
F3-11  7.5078420000  3.7539210000  11.2617630000
F3-12  11.2617630000  0.0000000000  11.2617630000
F3-13  11.2617630000  11.2617630000  0.0000000000
F3-14  7.5078420000  11.2617630000  3.7539210000
F3-15  11.2617630000  7.5078420000  3.7539210000
F3-16  11.2617630000  11.2617630000  7.5078420000
F3-17  7.5078420000  11.2617630000  11.2617630000
F3-18  11.2617630000  7.5078420000  11.2617630000
*  9*4  +  12*8  =  132
End  Of  Basis

*  The  rest  of  the  embedding  lattice  will  be  represented  by  point  charges,
*  which  enter  into  the  calculation  in  the  form  of  a  XField.
*
XField
  95
*
*  K(+)  ions  as  point  charges
  0.0000000000  0.0000000000  15.0156840000  +1.0  0.  0.  0.
  0.0000000000  7.5078420000  15.0156840000  +1.0  0.  0.  0.
  0.0000000000  15.0156840000  0.0000000000  +1.0  0.  0.  0.
  0.0000000000  15.0156840000  7.5078420000  +1.0  0.  0.  0.
  0.0000000000  15.0156840000  15.0156840000  +1.0  0.  0.  0.
  7.5078420000  0.0000000000  15.0156840000  +1.0  0.  0.  0.
  7.5078420000  7.5078420000  15.0156840000  +1.0  0.  0.  0.
  7.5078420000  15.0156840000  0.0000000000  +1.0  0.  0.  0.
  7.5078420000  15.0156840000  7.5078420000  +1.0  0.  0.  0.
  7.5078420000  15.0156840000  15.0156840000  +1.0  0.  0.  0.
  15.0156840000  0.0000000000  0.0000000000  +1.0  0.  0.  0.
  15.0156840000  0.0000000000  7.5078420000  +1.0  0.  0.  0.
  15.0156840000  0.0000000000  15.0156840000  +1.0  0.  0.  0.
  15.0156840000  7.5078420000  0.0000000000  +1.0  0.  0.  0.
  15.0156840000  7.5078420000  7.5078420000  +1.0  0.  0.  0.
  15.0156840000  7.5078420000  15.0156840000  +1.0  0.  0.  0.
  15.0156840000  15.0156840000  0.0000000000  +1.0  0.  0.  0.
  15.0156840000  15.0156840000  7.5078420000  +1.0  0.  0.  0.
  15.0156840000  15.0156840000  15.0156840000  +1.0  0.  0.  0.
*
*  F(-)  ions  as  point  charges
  3.7539210000  3.7539210000  15.0156840000  -1.0  0.  0.  0.
  3.7539210000  11.2617630000  15.0156840000  -1.0  0.  0.  0.
  3.7539210000  15.0156840000  3.7539210000  -1.0  0.  0.  0.
  3.7539210000  15.0156840000  11.2617630000  -1.0  0.  0.  0.
  11.2617630000  3.7539210000  15.0156840000  -1.0  0.  0.  0.
  11.2617630000  11.2617630000  15.0156840000  -1.0  0.  0.  0.
  11.2617630000  15.0156840000  3.7539210000  -1.0  0.  0.  0.
  11.2617630000  15.0156840000  11.2617630000  -1.0  0.  0.  0.
  15.0156840000  3.7539210000  3.7539210000  -1.0  0.  0.  0.
  15.0156840000  3.7539210000  11.2617630000  -1.0  0.  0.  0.
  15.0156840000  11.2617630000  3.7539210000  -1.0  0.  0.  0.
  15.0156840000  11.2617630000  11.2617630000  -1.0  0.  0.  0.
*
*  Mg(2+)  ions  in  face,  as  fractional  point  charges
  3.7539210000  3.7539210000  18.7696050000  +1.0  0.  0.  0.
  3.7539210000  11.2617630000  18.7696050000  +1.0  0.  0.  0.
  3.7539210000  18.7696050000  3.7539210000  +1.0  0.  0.  0.
  3.7539210000  18.7696050000  11.2617630000  +1.0  0.  0.  0.
  11.2617630000  3.7539210000  18.7696050000  +1.0  0.  0.  0.
  11.2617630000  11.2617630000  18.7696050000  +1.0  0.  0.  0.
  11.2617630000  18.7696050000  3.7539210000  +1.0  0.  0.  0.
  11.2617630000  18.7696050000  11.2617630000  +1.0  0.  0.  0.
  18.7696050000  3.7539210000  3.7539210000  +1.0  0.  0.  0.
  18.7696050000  3.7539210000  11.2617630000  +1.0  0.  0.  0.
  18.7696050000  11.2617630000  3.7539210000  +1.0  0.  0.  0.
  18.7696050000  11.2617630000  11.2617630000  +1.0  0.  0.  0.
*
*  Mg(2+)  ions  in  edge,  as  fractional  point  charges
  3.7539210000  18.7696050000  18.7696050000  +0.5  0.  0.  0.
  11.2617630000  18.7696050000  18.7696050000  +0.5  0.  0.  0.
  18.7696050000  3.7539210000  18.7696050000  +0.5  0.  0.  0.
  18.7696050000  11.2617630000  18.7696050000  +0.5  0.  0.  0.
  18.7696050000  18.7696050000  3.7539210000  +0.5  0.  0.  0.
  18.7696050000  18.7696050000  11.2617630000  +0.5  0.  0.  0.
*
*  Mg(2+)  ions  in  corner,  as  fractional  point  charges
  18.7696050000  18.7696050000  18.7696050000  +0.25  0.  0.  0.
*
*  F(-)  ions  in  face,  as  fractional  point  charges
  0.0000000000  3.7539210000  18.7696050000  -0.5  0.  0.  0.
  3.7539210000  0.0000000000  18.7696050000  -0.5  0.  0.  0.
  0.0000000000  11.2617630000  18.7696050000  -0.5  0.  0.  0.
  3.7539210000  7.5078420000  18.7696050000  -0.5  0.  0.  0.
  3.7539210000  18.7696050000  0.0000000000  -0.5  0.  0.  0.
  0.0000000000  18.7696050000  3.7539210000  -0.5  0.  0.  0.
  3.7539210000  18.7696050000  7.5078420000  -0.5  0.  0.  0.
  0.0000000000  18.7696050000  11.2617630000  -0.5  0.  0.  0.
  3.7539210000  18.7696050000  15.0156840000  -0.5  0.  0.  0.
  3.7539210000  15.0156840000  18.7696050000  -0.5  0.  0.  0.
  7.5078420000  3.7539210000  18.7696050000  -0.5  0.  0.  0.
  11.2617630000  0.0000000000  18.7696050000  -0.5  0.  0.  0.
  7.5078420000  11.2617630000  18.7696050000  -0.5  0.  0.  0.
  11.2617630000  7.5078420000  18.7696050000  -0.5  0.  0.  0.
  11.2617630000  18.7696050000  0.0000000000  -0.5  0.  0.  0.
  7.5078420000  18.7696050000  3.7539210000  -0.5  0.  0.  0.
  11.2617630000  18.7696050000  7.5078420000  -0.5  0.  0.  0.
  7.5078420000  18.7696050000  11.2617630000  -0.5  0.  0.  0.
  11.2617630000  18.7696050000  15.0156840000  -0.5  0.  0.  0.
  11.2617630000  15.0156840000  18.7696050000  -0.5  0.  0.  0.
  18.7696050000  3.7539210000  0.0000000000  -0.5  0.  0.  0.
  18.7696050000  0.0000000000  3.7539210000  -0.5  0.  0.  0.
  18.7696050000  3.7539210000  7.5078420000  -0.5  0.  0.  0.
  18.7696050000  0.0000000000  11.2617630000  -0.5  0.  0.  0.
  18.7696050000  3.7539210000  15.0156840000  -0.5  0.  0.  0.
  15.0156840000  3.7539210000  18.7696050000  -0.5  0.  0.  0.
  18.7696050000  11.2617630000  0.0000000000  -0.5  0.  0.  0.
  18.7696050000  7.5078420000  3.7539210000  -0.5  0.  0.  0.
  18.7696050000  11.2617630000  7.5078420000  -0.5  0.  0.  0.
  18.7696050000  7.5078420000  11.2617630000  -0.5  0.  0.  0.
  18.7696050000  11.2617630000  15.0156840000  -0.5  0.  0.  0.
  15.0156840000  11.2617630000  18.7696050000  -0.5  0.  0.  0.
  15.0156840000  18.7696050000  3.7539210000  -0.5  0.  0.  0.
  18.7696050000  15.0156840000  3.7539210000  -0.5  0.  0.  0.
  15.0156840000  18.7696050000  11.2617630000  -0.5  0.  0.  0.
  18.7696050000  15.0156840000  11.2617630000  -0.5  0.  0.  0.
*
*  F(-)  ions  in  edge,  as  fractional  point  charges
  0.0000000000  18.7696050000  18.7696050000  -0.25  0.  0.  0.
  7.5078420000  18.7696050000  18.7696050000  -0.25  0.  0.  0.
  18.7696050000  0.0000000000  18.7696050000  -0.25  0.  0.  0.
  18.7696050000  7.5078420000  18.7696050000  -0.25  0.  0.  0.
  18.7696050000  18.7696050000  0.0000000000  -0.25  0.  0.  0.
  18.7696050000  18.7696050000  7.5078420000  -0.25  0.  0.  0.
  18.7696050000  18.7696050000  15.0156840000  -0.25  0.  0.  0.
  15.0156840000  18.7696050000  18.7696050000  -0.25  0.  0.  0.
  18.7696050000  15.0156840000  18.7696050000  -0.25  0.  0.  0.

*  end  of  lattice  embedding  data:  KMgF3

*  13  cluster  components  and  881  lattice  components

  &SEWARD
  &SCF
Title
  (TlF12)11-  run  as  D2h
Occupied
  12  7  7  6  7  6  6  3

next up previous contents index
Next: Bibliography Up: 10. Examples Previous: 10.8 Extra information about