nextuppreviouscontents
MOLCAS manual:

Next: About this document ... Up: manual Previous: 10.9 Core and Embedding

Bibliography

1
B. O. Roos, V. Veryazov, and P.-O. Widmark.
Relativistic ano type basis sets for the alkaline and alkaline earth atoms applied to the ground state potentials for the corresponding dimers.
Theor. Chim. Acta, 111:345, 2004.

2
B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, and P.-O. Widmark.
Main group atoms and dimers studied with a new relativistic ano basis set.
J. Phys. Chem. A, 108:2851, 2004.

3
B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, and P.-O. Widmark.
New relativistic ano basis sets for transition metal atoms.
J. Phys. Chem. A, 109:6575-6579, 2005.

4
B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, and P.-O-Widmark.
New relativistic ano basis sets for actinide atoms.
Chem. Phys. Letters, 409:295-299, 2005.

5
B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, P.-O. Widmark, and A. C. Borin.
New relativistic ano basis sets for lanthanide atoms with applications to the ce diatom and luf3.
J. Phys. Chem. A, in press, 2008.

6
B. O. Roos, P.-Å. Malmqvist, and L. Gagliardi.
Heavy element quantum chemistry - the multiconfigurational approach.
In (E. Brändas and E. Kryachko), editors, Fundamental World of Quantum Chemistry, page 425. Kluwer Acad. Publ., Dordrecht, Netherlands, 2003.

7
F. Aquilante and R. Lindh and T. B. Pedersen.
Unbiased auxiliary basis sets for accurate two-electron integral approximations.
J. Chem. Phys., 127:114107, 2007.

8
F. Aquilante, P.-Å. Malmqvist, T. B. Pedersen, A. Ghosh, and B. O. Roos.
Cholesky decomposition based multiconfigurational second order perturbation theory (CD-CASPT2): Application to the spin state energetics of Co$^{\rm {III}}$(diiminato)(NPh).
J. Chem. Theory Comput., 4:694-702, 2008.

9
F. Aquilante, T. B. Pedersen, B. O. Roos, A. Sánchez de Merás, and H. Koch.
Accurate ab inition density fitting for multiconfigurational self-consistent field methods.
J. Chem. Phys., 129:024113, 2008.

10
B. O. Roos.
Accurate calculations and calibration.
In B. O. Roos, editor, Lecture Notes in Quantum Chemistry, European Summer School in Quantum Chemistry, in: Lecture Notes in Chemistry, 58, page 177. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

11
J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés.
The multi-state CASPT2 method.
Chem. Phys. Letters, 288:299-306, 1998.

12
J. D. Watts, J. Gauss, and R. J. Bartlett.
J. Chem. Phys., 98:8718, 1983.

13
P. Neogrády and M. Urban.
Int. J. Quantum Chem., 55:187, 1995.

14
R. Lindh.
The reduced multiplication scheme of the Rys-Gauss quadrature for 1st order integral derivatives.
Theor. Chim. Acta, 85:423-440, 1993.

15
K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski.
Second-order perturbation theory with a CASSCF reference function.
J. Phys. Chem., 94:5483, 1990.

16
K. Andersson, P.-Å. Malmqvist, and B. O. Roos.
Second-order perturbation theory with a complete active space self-consistent field reference function.
J. Chem. Phys., 96:1218, 1992.

17
Per Åke Malmqvist, Kristine Pierloot, Abdul Rehaman Moughal Shahi, Christopher J. Cramer, , and Laura Gagliardi.
The restricted active space followed by second-order perturbation theory method: Theory and application to the study of cuo2 and cu2o2 systems.
J. Chem. Phys., 128:204109, 2008.

18
Vicenta Sauri, Luis Serrano-Andrés, Abdul Rehaman Moughal Shahi, Laura Gagliardi, Steven Vancoillie, and Kristine Pierloot.
Multiconfigurational second-order perturbation theory restricted active space (raspt2) method for electronic excited states: A benchmark study.
J. Chem. Theory Comput., 7:153-168, 2011.

19
B. O. Roos, M. P. Fülscher, Per-Åke Malmqvist, M. Merchán, and L. Serrano-Andrés.
Theoretical studies of electronic spectra of organic molecules.
In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, page 357. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

20
B. O. Roos, K. Andersson, M. P. Fülscher, P.-Å. Malmqvist, L. Serrano-Andrés, K. Pierloot, and M. Merchán.
Multiconfigurational perturbation theory: Applications in electronic spectroscopy.
In I. Prigogine and S. A. Rice, editors, Advances in Chemical Physics: New Methods in Computational Quantum Mechanics, Vol. XCIII:219. John Wiley & Sons, New York, 1996.

21
K. Andersson and B. O. Roos.
Multiconfigurational second-order perturbation theory: A test of geometries and binding energies.
Int. J. Quantum Chem., 45:591, 1993.

22
G. Ghigo, B. O. Roos, and P.-Å. Malmqvist.
A modified definition of the zeroth order hamiltonian in multiconfigurational perturbation theory (caspt2).
Chem. Phys. Letters, 396:142, 2004.

23
K. Andersson.
Different forms of the zeroth-order Hamiltonian in second-order theory with a complete active space self-consistent field reference function.
Theor. Chim. Acta, 91:31, 1995.

24
B. O. Roos and K. Andersson.
Multiconfigurational perturbation theory with level shift -- the Cr2 potential revisited.
Chem. Phys. Letters, 245:215, 1995.

25
B. O. Roos, K. Andersson, M. P. Fülscher, L. Serrano-Andrés, K. Pierloot, M. Merchán, and V. Molina.
Applications of level shift corrected perturbation theory in electronic spectroscopy.
J. Mol. Struct. Theochem, 388:257, 1996.

26
N. Forsberg and P.-Å. Malmqvist.
Multiconfiguration perturbation theory with imaginary level shift.
Chem. Phys. Letters, 274:196, 1997.

27
T. Thorsteinsson, D. L. Cooper, J. Gerratt, P. B. Karadakov, and M. Raimondi.
Modern valence bond representations of casscf wavefunctions.
Theor. Chim. Acta, 93:343, 1996.

28
D. L. Cooper, T. Thorsteinsson, and J. Gerratt.
Fully-variational optimization of modern vb wave functions using the casvb strategy.
Int. J. Quantum Chem., 65:439, 1997.

29
D. L. Cooper, T. Thorsteinsson, and J. Gerratt.
Modern vb representations of casscf wave functions and the fully-variational optimization of modern vb wave functions using the casvb strategy.
Adv. Quant. Chem., 32:51, 1998.

30
T. Thorsteinsson and D. L. Cooper.
An overview of the casvb approach to modern valence bond calculations.
page 303, 2000.

31
P. Neogrády, M. Urban, and I. Hubač.
J. Chem. Phys., 100:3706, 1994.

32
P. Neogrády, M. Urban, and I. Hubač.
J. Chem. Phys., 97:5074, 1992.

33
P. J. Knowles, C. Hampel, and H. J. Werner.
J. Chem. Phys., 99:5219, 1993.

34
M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett.
J. Chem. Phys., 83:4041, 1985.

35
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon.
Chem. Phys. Letters, 157:479, 1989.

36
R. Ahlrichs, P. Scharf, and C Ehrhardt.
The coupled pair functional (cpf). a size consistent modification of the ci(sd) based on an energy functional.
J. Chem. Phys., 82:890, 1985.

37
D. P. Chong and S. R. Langhoff.
A modified coupled-pair functional approach.
J. Chem. Phys., 84:5606, 1986.

38
R. J. Gdanitz and R. Ahlrichs.
The averaged coupled-pair functional (acpf): a size-extensive modification of mr ci(sd).
Chem. Phys. Letters, 143:413, 1988.

39
B. Roos.
A new method for large-scale CI calculations.
Chem. Phys. Letters, 15:153-157, 1972.

40
I. Shavitt.
Int. J. Quantum Chem., S11:131, 1977.

41
P. E. M. Siegbahn.
J. Chem. Phys., 72:1647, 1980.

42
William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson.
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters.
J. Chem. Phys., 76(1):637-6492, 1982.

43
I. V. Abarenkov.
Unit cell for a lattice electrostatic potential.
Phys. Rev. B, 76:165127, 2007.

44
P. V. Sushko and I. V. Abarenkov.
General purpose electrostatic embedding potential.
J. Chem. Theory Comput., 6:1323-1333, 2010.

45
J. M. del Campo and A. M. Köster.
A hierarchical transition state search algorithm.
J. Chem. Phys., 129:Art. Nr. 024107, 2008.

46
R. C. Raffenetti.
J. Chem. Phys., 58:4452, 1973.

47
J. Almlöf and P. R. Taylor.
General contraction of gaussian basis sets. I. Atomic natural orbitals for first- and second row atoms.
J. Chem. Phys., 86:4070, 1986.

48
P.-O. Widmark, P.-Å. Malmqvist, and B. O. Roos.
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. I. First row atoms.
Theor. Chim. Acta, 77:291, 1990.

49
P.-O. Widmark, B. J. Persson, and B. O. Roos.
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. II. Second row atoms.
Theor. Chim. Acta, 79:419, 1991.

50
R. Pou-Amérigo, M. Merchán, I. Nebot-Gil, P.-O. Widmark, and B. O. Roos.
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions III. First row transition metal atoms.
Theor. Chim. Acta, 92:149-181, 1995.

51
K. Pierloot, B. Dumez, P.-O. Widmark, and B. O. Roos.
Density matrix averaged atomic narural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms H-Kr.
Theor. Chim. Acta, 90:87, 1995.

52
V. P. Vysotskiy, J. Boström, and V. Veryazov.
A new module for constrained multi-fragment geometry optimization in internal coordinates implemented in the molcas package.
J. Comp. Chem., 34:2657-2665, 2013.

53
Y. Wang, G. Zhai, B. Suo, Z. Gan, and Z. Wen.
Hole-particle correspondense in ci calculation.
Chem. Phys. Letters, 375:134, 2003.

54
B. Suo, G. Zhai, Y. Wang, Z. Wen, L. Li, and X. Hu.
Parrelazation of mrci base on hole-particle symmetry.
J. Comput. Chem., 26:88, 2005.

55
J. Pipek and P.G. Mezey.
J. Chem. Phys., 90:4916, 1989.

56
S. F. Boys.
Rev. Mod. Phys., 32:296, 1960.

57
J. M. Foster and S. F. Boys.
Rev. Mod. Phys., 32:300, 1960.

58
C. Edmiston and K. Ruedenberg.
Rev. Mod. Phys., 35:457, 1963.

59
F. Aquilante and T. B. Pedersen and A. Sánches de Merás and H. Koch.
Fast noniterative orbital localization for large molecules.
J. Chem. Phys., 125:174101, 2006.

60
J. E. Subotnik and Y. Shao and W. Z. Liang and M. Head-Gordon.
J. Chem. Phys., 121:9220, 2004.

61
L. Gagliardi, R. Lindh, and G. Karlström.
Local properties of quantum chemical systems: the loprop approach.
J. Chem. Phys., 121:4494, 2004.

62
A. D. Becke and E. R. Johnson.
Exchange-hole dipole moment and the dispersion interaction.
J. Chem. Phys., 122:154104, 2005.

63
A. Bernhardsson, R. Lindh, J. Olsen, and M. Fülscher.
A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning the associated response equation.
Mol. Phys., 96:617-628, 1999.

64
J. Stålring, A. Bernhardsson, and R. Lindh.
Analytical gradients of a state average MCSCF state and a state average diagnostic.
Mol. Phys., 99:103-114, 2001.

65
J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen.
J. Chem. Phys., 89:2185, 1985.

66
A. Wallqvist, P. Ahlström, and G. Karlström.
J. Phys. Chem., 94:1649-1656, 1990.

67
N. W. Moriarty and G. Karlström.
J. Phys. Chem., 100:17791, 1996.

68
A. Öhrn and G. Karlström.
Mol. Phys., 104:3087, 2006.

69
A. Öhrn and F. Aquilante.
Phys. Chem. Chem. Phys., 9:470, 2007.

70
A. Öhrn.
Development and Application of a First Principle Molecular Model for Solvent Effects.
PhD thesis, University of Lund, Theor. Chemistry, Chem. Center, P.O.B. 124,S-221 00 Lund, Sweden, 2007.

71
P.-Å. Malmqvist, A. Rendell, and B. O. Roos.
J. Phys. Chem., 94:5477, 1990.

72
B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn.
A Complete Active Space SCF method (CASSCF) using a density-matrix formulated super-CI approach.
Chem. Phys., 48:157-173, 1980.

73
B. O. Roos.
The complete active space self-consistent field method and its applications in electronic structure calculations.
In K. P. Lawley, editor, Advances in Chemical Physics; Ab Initio Methods in Quantum Chemistry - II, chapter 69, page 399. John Wiley & Sons Ltd., Chichester, England, 1987.

74
B. O. Roos.
The Complete Active Space SCF method in a fock-matrix-based super-CI formulation.
Int. J. Quantum Chem., S14:175-189, 1980.

75
F. Aquilante and T. B. Pedersen and R. Lindh.
Low-cost evaluation of the exchange fock matrix from cholesky and density fitting representations of the electron repulsion integrals.
J. Chem. Phys., 126:194106, 2007.

76
P.-Å. Malmqvist.
Calculation of transition density matrices by non-unitary orbital transformations.
Int. J. Quantum Chem., 30:479, 1986.

77
P.-Å. Malmqvist and B. O. Roos.
The CASSCF state interaction method.
Chem. Phys. Letters, 155:189, 1989.

78
S. Vancoillie, P.-Å. Malmqvist, and K. Pierloot.
Calculation of epr g tensors for transition-metal complexes based on multiconfigurational perturbation theory (caspt2).
ChemPhysChem, 8:1803, 2007.

79
Steven Vancoillie, Lubomír Rulíšek, Frank Neese, and Kristine Pierloot.
Theoretical description of the structure and magnetic properties of nitroxide-cu(ii)-nitroxide spin triads by means of multiconfigurational ab initio calculations.
J. Phys. Chem. A, 113:6149, 2009.

80
J. Almlöf, Jr. K. Faegri, and K. Korsell.
J. Comput. Chem., 3:385, 1982.

81
D. Cremer and J. Gauss.
J. Comput. Chem., 7:274, 1986.

82
M. Häser and R. Ahlrichs.
J. Comput. Chem., 10:104, 1989.

83
G. Karlström.
Chem. Phys. Letters, 67:348, 1979.

84
G. Karlström.
Int. J. Quantum Chem., 45:31, 1993.

85
T.H. Fischer and J. Almlöf.
J. Phys. Chem., 96:9768, 1992.

86
S. H. Vosko, L. Wilk, and M. Nusair.
Canadian J. Phys., 58:1200, 1980.

87
A. D. Becke.
Phys. Rev. A, 38:3098, 1988.

88
P. Hohenberg and W. Kohn.
Phys. Rev., 136:B864, 1964.

89
W. Kohn and L. J. Sham.
Phys. Rev., 140:A1133, 1965.

90
J. C. Slater.
Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids.
McGraw-Hill, New York, 1974.

91
A.D. BECKE.
Density functional calculations of molecular-bond energies.
J. Chem. Phys., 84(8):4524-4529, APR 15 1986.

92
A. D. Becke and E.R. Johnson.
A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations.
J. Chem. Phys., 127(12), SEP 28 2007.

93
N.C. Handy and A.J. Cohen.
Left-right correlation energy.
Mol. Phys., 99(5):403-412, MAR 2001.

94
C. Lee, W. Yang, and R. G. Parr.
Phys. Rev. B, 37:785, 1988.

95
B. Miehlich, A. Savin, H. Stoll, and H. Preuss.
Chem. Phys. Lett., 157:200, 1989.

96
J.P. Perdew, K. Burke, and M. Ernzerhof.
Generalized gradient approximation made simple.
Phys. Rev. Letters, 77:3865-3868, 1996.

97
A. D. Becke.
J. Chem. Phys., 98:5648, 1993.

98
S. Grimme.
Semiempirical hybrid density functional with perturbative second-order correlation.
J. Chem. Phys., 124(3):034108, APR 15 2006.

99
P.A. Stewart and P.M.W. Gill.
Becke-wigner: A simple but powerful density functional.
J. Chem. Soc.-Faraday Trans., 91(24):4337-4341, DEC 21 1995.

100
PMW Gill.
A new gradient-corrected exchange functional.
Mol. Phys., 89(2):433-445, OCT 10 1996.

101
W.M. Hoe, A.J. Cohen, and N.C. Handy.
Assessment of a new local exchange functional optx.
Chem. Phys. Letters, 341(3-4):319-328, JUN 22 2001.

102
M.J. Allen, T.W. Keal, and D.J. Tozer.
Improved nmr chemical shifts in density functional theory.
Chem. Phys. Letters, 380(1-2):70-77, OCT 13 2003.

103
T.W. Keal and D.J. Tozer.
A semiempirical generalized gradient approximation exchange-correlation functional.
J. Chem. Phys., 121(12):5654-5660, SEP 22 2004.

104
J.P. Perdew, M. Ernzerhof, and K. Burke.
Rationale for mixing exact exchange with density functional approximations.
J. Chem. Phys., 105:9982-9985, 1996.

105
Adrienn Ruzsinszky, Gabor I. Csonka, and Gustavo E. Scuseria.
Regularized gradient expansion for atoms, molecules, and solids.
J. Chem. Theory Comput., 5(4):763-769, APR 2009.

106
V. Tognetti, P. Cortona, and C. Adamo.
A new parameter-free correlation functional based on an average atomic reduced density gradient analysis.
J. Chem. Phys., 128(3), JAN 21 2008.

107
M. Swart, M. Sola, and F. M. Bickelhaupt.
A new all-round density functional based on spin states and s(n)2 barriers.
J. Chem. Phys., 131(9), SEP 7 2009.

108
Y. Zhao and D. G. Truhlar.
J. Chem. Phys., 125:194101, 2006.

109
Y. Zhao and D. G. Truhlar.
J. Phys. Chem. A, 110:13126, 2006.

110
Y. Zhao and D. G. Truhlar.
Theor. Chim. Acta, 120:215, 2008.

111
Y. Zhao and D. G. Truhlar.
Acc. Chem. Res., 41:157, 2008.

112
R. Lindh, U. Ryu, and B. Liu.
The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two-electron integral evaluation.
J. Chem. Phys., 95:5889-5897, 1991.

113
E.R. Davidson.
Use of double cosets in constructing integrals over symmetry orbitals.
J. Chem. Phys., 62:400, 1975.

114
B. G. Johnson, P. M. W. Gill, and J. A. Pople.
The performance of a family of density functional methods.
J. Chem. Phys., 98:5612, 1993.

115
N. C. Handy, D. J. Tozer, G. J. Laming, C. W. Murray, and R. D. Amos.
Analytic second derivatives of the potential energy surface.
Israel J. Chem., 33:331, 1993.

116
J. Baker, J. Andzelm, and A. Scheiner.
The effect of grid quality and weight derivatives in density functional calculations.
J. Chem. Phys., 101:8894, 1994.

117
M. E. Mura and P. J. Knowles.
Improved radial grids for quadrature in molecular density-functional calculations.
J. Chem. Phys., 104:9848, 1996.

118
A. D. Becke.
A multicenter numerical integration scheme for polyatomic molecules.
J. Chem. Phys., 88:2547, 1988.

119
C. W. Murray, N. C. Handy, and G. J. Laming.
Quadrature schemes for integrals of density functional theory.
Mol. Phys., 78:997, 1993.

120
O. Treutler and R. Ahlrichs.
Efficient molecular numerical integration schemes.
J. Chem. Phys., 102:346, 1995.

121
R. Lindh, P.-Å. Malmqvist, and L. Gagliardi.
Molecular integrals by numerical quadrature. i. radial integration.
Theor. Chem. Acc., 106:178, 2001.

122
D. Peng and M. Reiher.
Exact decoupling of the relativistic fock operator.
Theor. Chem. Acc., 131:Art. Nr. 1081, 2012.

123
D. Peng and K. Hirao.
An arbitrary order douglas-kroll method with polynomial cost.
J. Chem. Phys., 130:Art. Nr. 044102, 2009.

124
M. Reiher and A. Wolf.
Exact decoupling of the dirac hamiltonian. i. general theory.
J. Chem. Phys., 121:2037-2047, 2004.

125
M. Reiher and A. Wolf.
Exact decoupling of the dirac hamiltonian. ii. the generalized douglas-kroll-hess transformation up to arbitrary order.
J. Chem. Phys., 121:10945-10956, 2004.

126
M. Reiher.
Douglas-kroll-hess theory: a relativistic electrons-only theory for chemistry.
Theor. Chim. Acta, 116:241-252, 2006.

127
A. Wolf, M. Reiher, and B. Hess.
The generalized douglas-kroll transformation.
J. Chem. Phys., 117:9215-9226, 2002.

128
A. Wolf and M. Reiher.
Exact decoupling of the dirac hamiltonian. iii. molecular properties.
J. Chem. Phys., 124:Art. Nr. 06102, 2006.

129
A. Wolf and M. Reiher.
Exact decoupling of the dirac hamiltonian. iv. automated evaluation of molecular properties within the douglas-kroll-hess theory up to arbitrary order.
J. Chem. Phys., 124:Art. Nr. 06103, 2006.

130
W. Kutzelnigg and We. Liu.
Quasirelativistic theory equivalent to fully relativistic theory.
J. Chem. Phys., 123:Art. Nr. 241102, 2005.

131
W. Liu and D. Peng.
Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory.
J. Chem. Phys., 125:Art. Nr. 044102, 2006.

132
Y. Xiao D. Peng, W. Liu and L. Cheng.
Making four- and two-component relativistic density functional methods fully equivalent based on the idea of from atoms to molecule.
J. Chem. Phys., 127:Art. Nr. 104106, 2007.

133
A. J. Sadlej M. Barysz and J. G. Snijders.
Nonsingular two / one-component relativistic hamiltonians accurate through arbitrary high order in $\alpha^{2}$.
Int. J. Quantum Chem., 65:225-239, 1997.

134
D. Kedziera and M. Barysz.
Non-iterative approach to the infinite-order two-component (iotc) relativistic theory and the non-symmetric algebraic riccati equation.
Chem. Phys. Letters, 446:176-181, 2007.

135
Daoling Peng and Markus Reiher.
Local relativistic exact decoupling.
J. Chem. Phys., 136:244108, 2012.

136
L. F. Chibotaru, L. Ungur, and A. Soncini.
The origin of non-magnetic kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment.
Angew. Chem. Int. Ed., 47:4126-4129, 2008.

137
L. F. Chibotaru, L. Ungur, Ch. Aronica, H. Elmoll, G. Pillet, and D. Luneau.
Structure, magnetism, and theoretical study of a mixed valence coco heptanuclear wheel: Lack of smm behavior despite negative magnetic anisotropy.
J. Am. Chem. Soc., 130(37):12445-12455, 2008.

138
Liviu F. Chibotaru and Liviu Ungur.
Ab initio calculation of anisotropic magnetic properties of complexes i: Unique definition of pseudospin hamiltonians and their derivation.
J. Chem. Phys., 137:064112, 2012.

139
Liviu Ungur, Maarten Thewissen, Jean-Pierre Costes, Wolfgang Wernsdorfer, and Liviu F. Chibotaru.
Interplay of strongly anisotropic metal ions in magnetic blocking of complexes.
Inorg. Chem., 52:6328, 2013.

140
R. Lindh, A. Bernhardsson, G. Karlström, and P.-Å. Malmqvist.
On the use of a Hessian model function in molecular geometry optimizations.
Chem. Phys. Letters, 241:423-428, 1995.

141
C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch.
Using redundant internal coordinates to optimize equilibrium geometries and transition states.
J. Comput. Chem., 17:49, 1996.

142
P. Pulay and G. Fogarasi.
Geometry optimization in redundant internal coordinates.
J. Chem. Phys., 96:2856, 1992.

143
J. Baker, A. Kessi, and B. Delley.
The generation and use of localized internal coordinates in geometry optimization.
J. Chem. Phys., 105:192, 1996.

144
R. Lindh, A. Bernhardsson, and M. Schütz.
Force-constant weighted redundant coordinates in molecular geometry optimizations.
Chem. Phys. Letters, 303:567-575, 1999.

145
J. Baker.
Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates.
J. Comput. Chem., 14:1085, 1993.

146
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Forseman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople.
Gaussian 94 (Revision A.1), 1995.

147
J. M. Bofill.
Updated hessian matrix and the restricted step method for locating transition structures.
J. Comput. Chem., 15:1, 1994.

148
J. M. Bofill.
Remarks on the updated hessian matrix methods.
Int. J. Quantum Chem., 64:324, 2003.

149
A. Banerjee, N. Adams, J. Simons, and R. Shepard.
Search for stationary points on surfaces.
J. Phys. Chem., 89:52, 1985.

150
E. Besalú and J. M. Bofill.
On the automatic restricted-step rational-function-optimization method.
Theor. Chim. Acta, 100:265, 1998.

151
P. Császár and P. Pulay.
Geometry optimization by direct inversion in the iterative subspace.
J. of Mol. Struct., 114:31, 1984.

152
P. Pulay.
Convergence acceleration of iterative sequences. the case of scf iterations.
Chem. Phys. Lett., 73:393, 1980.

153
P. Pulay.
Improved scf convergence acceleration.
J. Comp. Chem., 3:556, 1982.

154
H. Sellers.
The c2-diis convergence acceleration algorithm.
Int. J. Quantum Chem., 45:31, 1993.

155
C. J.Cerjan and W. H. Miller.
On finding transition states.
J. Chem. Phys., 75:2800, 1981.

156
A.J. Sadlej.
Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties.
Collect. Czech. Chem. Commun., 53:1995, 1988.

157
A. J. Sadlej.
Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. II. Second-row atoms: Si through Cl.
Theor. Chim. Acta, 79:123, 1991.

158
A. J. Sadlej and M. Urban.
Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. III. Alkali (Li. Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr).
J. Mol. Struc., 234:147, 1991.

159
A. J. Sadlej.
Medium-sized polarized basis sets for high-level-correlated calculations of molecular electric properties. IV. Third-row atoms: Ge through Br.
Theor. Chim. Acta, 81:45, 1991.

160
A. J. Sadlej.
Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties. V. Fourth-row atoms: Sn through I.
Theor. Chim. Acta, 81:339, 1992.

161
V. Kellö and A. J. Sadlej.
Estimates of relativistic contributions to molecular properties.
J. Chem. Phys., 93:8122, 1990.

162
A. J. Sadlej and M. Urban.
Mutual dependence of relativistic and electron correlation contributions of molecular properties: The dipole moment of AgH.
Chem. Phys. Letters, 176:293, 1991.

163
S. Huzinaga, L. Seijo, Z. Barandiarán, and M. Klobukowski.
The ab initio model potential method. main group elements.
J. Chem. Phys., 86:2132, 1987.

164
Z. Barandiarán and L. Seijo.
The ab initio model potential representation of the crystalline environment. theoretical study at the local distortion on nacl:cu+.
J. Chem. Phys., 89:5739-5746, 1988.

165
Z. Barandiarán, L. Seijo, and S. Huzinaga.
The ab initio model potential method. second series transition metals.
J. Chem. Phys., 93:5843, 1990.

166
C. Wittborn and U. Wahlgren.
New relativistic effective core potentials for heavy elements.
Chem. Phys., 201:357, 1995.

167
F. Rakowitz, C. M. Marian, L. Seijo, and U. Wahlgren.
Spin-free relativistic no-pair ab initio core model potentials and valence basis sets for the transition metal elements Sc to Hg. Part I.
J. Chem. Phys., 110:3678, 1999.

168
F. Rakowitz, C. M. Marian, and L. Seijo.
Spin-free relativistic no-pair ab initio core model potentials and valence basis sets for the transition metal elements Sc to Hg. Part II.
J. Chem. Phys., 111:10436, 1999.

169
Z. Barandiarán and L. Seijo.
In S. Fraga, editor, Computational Chemistry: Structure, Interactions and Reactivity, volume 77B of Studies in Physical and Theoretical Chemistry, pages 435-461. Elsevier, Amsterdam, 1992.

170
J. C. Phillips and L. Kleinman.
New method for calculating wave functions in crystal and molecules.
Phys.., 116:287, 1959.

171
S. Huzinaga and A. A. Cantu.
J. Chem. Phys. 55, 5543 (1971); S. Huzinaga, D. McWilliams, and A. A. Cantu, Adv. Quantum Chem. 7, 187 (1973).

172
J. L. Pascual, L. Seijo, and Z. Barandiarán.
Ab initio model potential study of environmental effects on the jahn-teller parameters of cu2+ and ag2+ impurities in mgo, cao, and sro hosts.
J. Chem. Phys., 98:9715, 1993.

173
M. Pelissier, N. Komiha, and J.-P. Daudey.
J. Comp. Chem., 9:298, 1988.

174
P. J. Hay and W. R. Wadt.
Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms sc-hg.
J. Chem. Phys., 82:270, 1985.

175
P. J. Hay and W. R. Wadt.
Ab initio effective core potentials for molecular calculations. potentials for main group elements na-bi.
J. Chem. Phys., 82:284, 1985.

176
P. J. Hay and W. R. Wadt.
Ab initio effective core potentials for molecular calculations. potentials for k to au including the outermost core orbitals.
J. Chem. Phys., 82:299, 1985.

177
P. Fuentealba, H. Preuss, H. Stoll, and L. v. Szentpaly.
Chem. Phys. Lett., 89:418, 1982.

178
P. Fuentealba, L. v. Szentpaly, H. Preuss, and H. Stoll.
J. Phys. B, 18:1287, 1985.

179
G. Igel-Mann, H. Stoll, and H. Preuss.
Mol. Phys., 65:1321, 1988.

180
A. Bergner, M. Dolg, W. Kuechle, H. Stoll, and H. Preuss.
Mol. Phys., 80:1431, 1993.

181
P. Fuentealba, H. Stoll, L. v. Szentpaly, P. Schwerdtfeger, and H. Preuss.
J. Phys. B, 16:1323, 1983.

182
M. Kaupp, P. v. R. Schleyer, H. Stoll, and H. Preuss.
J. Chem. Phys., 94:1360, 1991.

183
M. Dolg, U. Wedig, H. Stoll, and H. Preuss.
J. Chem. Phys., 86:866, 1987.

184
U. Wedig, M. Dolg, H. Stoll, and H. Preuss.
In A. Veillard, editor, Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, page 79. Reidel, Dordrecht, 1986.

185
L. v. Szentpaly, P. Fuentealba, H. Preuss, and H. Stoll.
Chem. Phys. Lett., 93:555, 1982.

186
D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss.
Theor. Chim. Acta, 77:123, 1990.

187
H. Stoll, P. Fuentealba, P. Schwerdtfeger, J. Flad, L. v. Szentpaly, and H. Preuss.
J. Chem. Phys., 81:2732, 1984.

188
W. Kuechle, M. Dolg, H. Stoll, and H. Preuss.
Mol. Phys., 74:1245, 1991.

189
G. Igel-Mann.
Thesis, Univeristy of Stuttgart, Germany, 1987.

190
M. Dolg, H. Stoll, and H. Preuss.
Theor. Chim. Acta, 85:441, 1993.

191
M. Dolg, H. Stoll, and H. Preuss.
J. Chem. Phys., 90:1730, 1989.

192
M. Dolg, P. Fulde, W. Kuechle, C.-S. Neumann, and H. Stoll.
J. Chem. Phys., 94:3011, 1991.

193
M. Dolg, H. Stoll, A. Savin, and H. Preuss.
Theor. Chim. Acta, 75:173, 1989.

194
M. Dolg, H. Stoll, H.-J. Flad, and H. Preuss.
J. Chem. Phys., 97:1162, 1992.

195
M. Dolg, H. Stoll, H. Preuss, and R.M. Pitzer.
J. Phys. Chem., 97:5852, 1993.

196
P. Schwerdtfeger, M. Dolg, W.H.E. Schwarz, G.A. Bowmaker, and P.D.W. Boyd.
J. Chem. Phys., 91:1762, 1989.

197
U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss.
Mol. Phys., 78:1211, 1993.

198
W. Kuechle, M. Dolg, H. Stoll, and H. Preuss.
J. Chem. Phys., 100:7535, 1994.

199
A. Nicklass, M. Dolg, H. Stoll, and H. Preuss.
J. Chem. Phys., 102, 1995.

200
T. Leininger, A. Nicklass, H. Stoll, M. Dolg, and P. Schwerdtfeger.
J. Chem. Phys., 105:1052, 1996.

201
X. Cao, M. Dolg, and H. Stoll.
J. Chem. Phys., 118:487, 2003.

202
L. R. Kahn and W. A. Goddard.
Chem. Phys. Letters, 2:667, 1968.

203
P. A. Christiansen, Y. S. Lee, and K. S. Pitzer.
J. Chem. Phys., 71:4445, 1979.

204
P. Durand and J. C. Barthelat.
Theor. Chim. Acta, 38:283, 1975.

205
C.-K. Skylaris, L. Gagliardi, N. C. Handy, A. G. Ioannou, S. Spencer, A. Willetts, and A. M. Simper.
An efficient method for calculating effective core potential integrals which involve projection operators.
Chem. Phys. Letters, 296:445-451, 1998.

206
H. Partridge, S. R. Langhoff, and C. W. Bauschlicher.
Electronic spectroscopy of diatomic molecules.
In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, page 209. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

207
P. R. Taylor.
Molecular symmetry and quantum chemistry.
In B. O. Roos, editor, Lecture Notes in Quantum Chemistry, European Summer School in Quantum Chemistry, in: Lecture Notes in Chemistry, 58, page 89. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

208
M. R. A. Blomberg, P. E. M. Siegbahn, and B. O. Roos.
Mol. Phys., 47:127, 1982.

209
R. Pou-Amérigo, M. Merchán, I. Nebot-Gil, P.-Å. Malmqvist, and B. O. Roos.
The chemical bonds in CuH, Cu2, NiH, and Ni2 studied with multiconfigurational second order perturbation theory.
J. Chem. Phys., 101:4893, 1994.

210
K. Andersson and B. O. Roos.
Excitation energies in the nickel atom studied with the complete active space SCF method and second-order perturbation theory.
Chem. Phys. Letters, 191:507, 1992.

211
G. Herzberg.
Molecular Spectra and Molecular Structure.
Van Nostrand, New York, 1939-1966.

212
P. R. Taylor.
Accurate calculations and calibration.
In B. O. Roos, editor, Lecture Notes in Quantum Chemistry, European Summer School in Quantum Chemistry, in: Lecture Notes in Chemistry, 58, page 325. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

213
R. González-Luque, M. Merchán, and B. O. Roos.
A theoretical determination of the dissociation energy of the nitric oxide dimer.
Theor. Chim. Acta, 88:425, 1994.

214
M. Peric, B. Engels, and S. D. Peyerimhoff.
Theoretical spectroscopy on small molecules.
In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, page 261. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

215
T. Helgaker.
Optimization of minima and saddle points.
In B. O. Roos, editor, Lecture Notes in Quantum Chemistry, European Summer School in Quantum Chemistry, in: Lecture Notes in Chemistry, 58, page 295. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

216
R. Lindh, A. Bernhardsson, and M. M. Schütz.
Force-constant weighted redundant coordinates in molecular geometry optimizations.
Chem. Phys. Letters, 303:719, 1999.

217
M. Rubio, M. Merchán, E. Ortí, and B. O. Roos.
A theoretical study of the electronic spectrum of naphthalene.
Chem. Phys., 179:395, 1994.

218
L. Serrano-Andrés, M. Merchán, I. Nebot-Gil, R. Lindh, and B. O. Roos.
Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene.
J. Chem. Phys., 98:3151, 1993.

219
L. Serrano-Andrés and B. O. Roos.
Theoretical study of the absorption and emission spectra of indole in gas and in a solvent.
J. Am. Chem. Soc., 118:185, 1996.

220
C. S. Page, M. Merchán, L. Serrano-Andrés, and M. Olivucci.
A theoretical study of the low-lying excited states of trans- and cis-urocanic acid.
J. Phys. Chem. A, 103:9864, 1999.

221
R. Pou-Amérigo, M. Merchán, and E. Ortí.
J. Chem. Phys., 110:9536, 1999.

222
C. E. Blom and A. Bauder.
Chem. Phys. Letters, 88:55, 1982.

223
V. Molina and M. Merchán.
Theoretical analysis of the electronic spectra of benzaldehyde.
J. Phys. Chem. A, 105:3745, 2001.

224
F. Ford, T. Yuzawa, M. S. Platz amd S. Matzinger, and M. P. Fülscher.
The rearrangement of dimethylcarbene to propene: A laser flash photolysis and ab initio study.
J. Am. Chem. Soc., 120:4430, 1998.

225
T. J. Lee and P. R. Taylor.
Int. J. Quantum Chem., 23:199, 1989.

226
T. J. Lee and G. E. Scuseria.
Achieving chemical accuracy with coupled-cluster theory.
In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, page 47. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

227
S. Matzinger and M. P. Fülscher.
Methyl substitution in carbenes. A theoretical prediction of the singlet-triplet energy separation of dimethylcarbene.
J. Phys. Chem., 99:10747, 1995.

228
D. J. Tozer, R. D. Amos, N. C. Handy, B. O. Roos, and L. Serrano-Andrés.
Does funcional theory contribute to the understanding of excited states of unsaturated organic compounds?
Mol. Phys., 97:859-868, 1999.

229
L. Serrano-Andrés, M. Fülscher, B. O. Roos, and M. Merchán.
Theoretical study of the electronic spectrum of imidazole.
J. Chem. Phys., 100:6484, 1996.

230
L. Serrano-Andrés.
Theoretical Study of the Electronic Spectra of Organic Systems.
PhD thesis, University of Valencia, Dept. Química Física, Dr. Moliner 50, Burjassot,E-46100 Valencia, Spain, 1994.

231
L. Serrano-Andrés, M. Merchán, M. Fülscher, and B. O. Roos.
A theoretical study of the electronic spectrum of thiophene.
Chem. Phys. Letters, 211:125, 1993.

232
K. Kaufmann, W. Baumeister, and M. Jungen.
J. Phys. B: At. Mol. Opt. Phys., 22:2223, 1989.

233
M. P. Fülscher and B. O. Roos.
The excited states of pyrazine: A basis set study.
Theor. Chim. Acta, 87:403, 1994.

234
K. Andersson.
Multiconfigurational Perturbation Theory.
PhD thesis, University of Lund, Theor. Chemistry, Chem. Center, P.O.B. 124,S-221 00 Lund, Sweden, 1992.

235
M. P. Fülscher, L. Serrano-Andrés, and B. O. Roos.
A theoretical study of the electronic spectra of adenine and guanine.
J. Am. Chem. Soc., 119:6168, 1997.

236
L. Serrano-Andrés and M. P. Fülscher.
Theoretical study of the electronic spectroscopy of peptides. 1. The peptidic bond: Primary, secondary, and tertiary amides.
J. Am. Chem. Soc., 118:12190, 1996.

237
M. Merchán, E. Ortí, and B. O. Roos.
Theoretical determination of the electronic spectrum of free base of porphin.
Chem. Phys. Letters, 226:27, 1994.

238
L. Serrano-Andrés and B. O. Roos.
A theoretical study of the indigoid dyes and their chromophore.
Chem. Eur. J., 3:717, 1997.

239
K. Pierloot, E. Van Praet, L. G. Vanquickenborne, and B. O. Roos.
Systematic ab initio study of the ligand field spectra of hexacyanometalate complexes.
J. Phys. Chem., 97:12220, 1993.

240
K. Pierloot, J. O. A. De Kerpel, U. Ryde, and B. O. Roos.
A theoretical study of the electronic spectrum of plastocyanin.
J. Am. Chem. Soc., 119:218, 1997.

241
K. Pierloot, E. Tsokos, and B. O. Roos.
3p-3d intershell correlation effects in transition metal ions.
Chem. Phys. Letters, 214:583, 1993.

242
M. Merchán and R. González-Luque.
Ab Initio study on the low-lying excited states of retinal.
J. Chem. Phys., 106:1112, 1997.

243
L. Serrano-Andrés, M. Merchán, B. O. Roos, and R. Lindh.
Theoretical study of the internal charge transfer in aminobenzonitriles.
J. Am. Chem. Soc., 117:3189, 1995.

244
M. Merchán, R. Pou-Amérigo, and B. O. Roos.
A theoretical study of the dissociation energy of Ni+2. A case of broken symmetry.
Chem. Phys. Letters, 252:405, 1996.

245
M. P. Fülscher, S. Matzinger, and B. Bally.
Excited states in polyene radical cations. An ab initio theoretical study.
Chem. Phys. Letters, 236:167, 1995.

246
M. Rubio, M. Merchán, E. Ortí, and B. O. Roos.
Theoretical study of the electronic spectra of the biphenyl cation and anion.
J. Phys. Chem., 99:14980, 1995.

247
V. Barone and M. Cossi.
J. Phys. Chem. A, 102:1995, 1998.

248
M. Cossi, N. Rega, G. Scalmani, and V. Barone.
J. Chem. Phys., 114:5691-5701, 2001.

249
G. Karlström.
A new approach to the modeling of dielectric media effects in ab initio quantum chemical calculations.
J. Phys. Chem., 92:1315-1318, 1988.

250
L. Serrano-Andrés, M. P. Fülscher, and G. Karlström.
Int. J. Quantum Chem., 65:167, 1997.

251
J. Tomasi and M. Persico.
Chem. Rev., 94:2027, 1994.

252
M. Cossi and V. Barone.
J. Chem. Phys., 112:2427, 2000.

253
A. Bernhardsson, R. Lindh, G. Karlström, and B. O. Roos.
Direct self-consistent reaction field with Pauli repulsion: Solvation effects on methylene peroxide.
Chem. Phys. Letters, 251:141, 1996.

254
W. F. Forbes and R. Shilton.
J. Am. Chem. Soc., 81:786, 1959.

255
N. Douglas and N. M. Kroll.
Ann.Phys., 82:89, 1974.

256
B.A. Hess.
Phys.Rev. A, 33:3742, 1986.

257
P.-Å. Malmqvist, B. O. Roos, and B. Schimmelpfennig.
The restricted active space (ras) state interaction approach with spin-orbit coupling.
Chem. Phys. Letters, 357:230, 2002.

258
B. A. Hess, C.M. Marian, U. Wahlgren, and O. Gropen.
Chem. Phys. Letters, 251:365, 1996.

259
B. Schimmelpfennig.
Amfi, an atomic mean-field spin-orbit integral program.
Stockholm University, 1996.

260
B. O. Roos and P.-Å. Malmqvist.
On the effects of spin-orbit coupling on molecular properties: Dipole moment and polarizability of pbo and spectroscopic constants for the ground and excited states.
Adv. Quant. Chem., 47:37, 2004.

261
U. Wahlgren.
The effective core potential method.
In B. O. Roos, editor, Lecture Notes in Quantum Chemistry, European Summer School in Quantum Chemistry, in: Lecture Notes in Chemistry, 58, page 413. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

262
L. Seijo and Z. Barandiarán.
The ab initio model potential method: A common strategy for effective core potential and embedded cluster calculations.
In J. Leszczynski, editor, Computational Chemistry: Reviews of Current Trends, volume 4, page 55. World Scientific, Singapur, 1999.

263
I. Shavitt.
Int. J. Quantum Chem., S12:5, 1978.

264
L. Serrano-Andrés, M. Merchán, M. P. Fülscher, and B. O. Roos.
A theoretical study of the electronic spectrum of thiophene.
Chem. Phys. Letters, 211:125, 1993.

265
M.J.D. Powell.
Recent advances in unconstrained optimization. mathematical programming.
Math. Prog., 1:26, 1971.

266
R. Fletcher.
Practical Methods of optimization.
Wiley, New York, 1981.

267
C.G. Broyden.
The convergence of a class of double-rank minimization algorithms. the new algorithm.
J. Inst. Math. Appl., 6:222, 1970.

268
R. Fletcher.
A new approach to variable metric algorithms.
Comp. J., 13:317, 1970.

269
D. Goldfarb.
A family of variable-metric methods derived by variational means.
Math. Comp., 24:23, 1970.

270
D.F. Shanno.
Conditioning of quasi-newtonian methods for function minimization.
Math. Comp., 24:647, 1970.

271
J.E. Dennis and R.R. Schnabel.
Least change secant updates for quasi-newtonian methods.
SIAM Rev., 21:443, 1979.

272
H. B. Schlegel.
Optimization of equilibrium geometries and transition structures.
In K. P. Lawley, editor, Advances in Chemical Physics; Ab Initio Methods in Quantum Chemistry - I, chapter 69, page 249. John Wiley & Sons Ltd., Chichester, England, 1987.

273
M. Schütz and R. Lindh.
Theor. Chim. Acta, 95:13, 1997.

274
P. E. M. Siegbahn, J. Almlöf, J. Heiberg, and B. O. Roos.
The Complete Active Space SCF (CASSCF) method in a Newton-Raphson formulation with application to the HNO molecule.
J. Chem. Phys., 74:2384-2396, 1981.

275
T. A. Halgren and W. N. Lipscomb.
Chem. Phys. Letters, 50:225, 1977.

276
W. J. Hehre.
Practical Strategies for Electronic Structure Calculations.
Wavefunction, Irvine, California, 1995.

277
K. Pierloot, B. Dumez, P.-O. Widmark, and B. O. Roos.
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. IV. Medium size basis sets for the atoms H-Kr.
Theor. Chim. Acta, 90:87, 1995.

278
K. Andersson, M. Baryz, A. Bernhardsson, M. R. A. Blomberg, P. Boussard, D. L. Cooper, T. Fleig, M. P. Fülscher, B. Hess, G. Karlström, R. Lindh, P.-Å. Malmqvist, P. Neogrády, J. Olsen, B. O. Roos, A. J. Sadlej, B. Schimmelpfennig, M. Schütz, L. Seijo, L. Serrano, P. E. Siegbahn, J. Stålring, T. Thorsteinsson, V. Veryazov, Ulf Wahlgren, and P.-O. Widmark.
MOLCAS Version 5.0.
Dept. of Theor. Chem., Chem. Center, Univ. of Lund, P.O.B. 124, S-221 00 Lund, Sweden, Lund, 2000.

279
R. Lindh, P.-Å. Malmqvist, and L. Gagliardi.
Theor. Chem. Acc., 106:178, 2001.

280
G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo.
Molcas: a program package for computational chemistry.
Computational Material Science, 28:222, 2003.

281
O. Christiansen, J.Gauss, and B. Schimmelpfennig.
Phys. Chem. Chem. Phys., 2:965, 2000.

282
U. Ryde, M. H. M. Olsson, K. Pierloot, and B. O. Roos.
The cupric geometry of blue copper proteins is not strained.
J. Mol. Biol., 261:586-596, 1996.

283
U. Ryde, M. H. M. Olsson, B. O. Roos, J. O. A. De Kerpel, and K. Pierloot.
On the role of strain in blue copper proteins.
J. Biol. Inorg. Chem., 5:565-574, 2000.

284
U. Ryde and M. H. M. Olsson.
Structure, strain, and reorganisation energy of blue-copper models in the protein.
Int. J. Quantum Chem., 81:335-347, 2001.

285
V. Veryazov, P. -O. Widmark, L. Serrano-Andrés, R. Lindh, and B. O. Roos.
Int. J. Quantum Chem., 100:626, 2004.

286
O. Engkvist, P.-O. Åstrand, and G. Karlström.
Accurate intermolecular potentials obtained from molecular wave funcions: Bridging the gap between quantum chemistry and molecular simulations.
Chem. Rev., 100:4087-4108, 2000.
\begin{figure}\vbox{\include{index}
}\end{figure}
next up previous contents
Next: About this document ... Up: manual Previous: 10.9 Core and Embedding