MOLCAS manual:

Next: 8.48 vibrot Up: 8. Programs Previous: 8.46 SlapAf


8.47 surfacehop

This module deals with surface hop semiclassical molecular dynamics (SHMD) and has to be used together with module DYNAMIX. Its purpose is the calculation of the relax root for the next step of the SHMD. In this moment the implemented algorithm under this module is the Tully's fewest switches[163], along with the Hammes-Schiffer/Tully scheme[164] and the decoherence correction proposed by Granucci and Persico[165]. Output files

RUNFILESurface hop information such as Amatrix and CI coefficients for previous steps are stored in this file.

8.47.1 Input


>> FOREACH A in (1..400)


 nactel = 6 0 0
 inactive = 23
 ras2 = 6
 ciroot = 2 2 1
 prwf = 0.0
 mdrlxroot = 2

 decoherence = 0.1


 dt = 41.3
 velo = 1
 thermo = 0
>>> End Do General keywords

TULLYThis keyword enables the Tully-Hammes-Schiffer integration of the TDSE for the Tully Surface Hop Algorithm. If you use this keyword you should not use the HOP keyword in DYNAMIX.
DECOHERENCEThis keyword must be used after the TULLY keyword. It enables the decoherence correction in the population density matrix as reported by Persico-Granucci. The value is called decay factor and it is usually 0.1 hartree. It can be seen as how strongly this correction is applied. It is recommendable to leave it to 0.1, unless you really know what you're doing.
SUBSTEPThis keyword must be used after the TULLY keyword. This keyword specifies how many steps of integration we use to interpolate/extrapolate between two Newton's consecutive steps. The default is usually a good compromise between quickness and precision (200 substeps each femtoseconds of MD).
PSUBThis keyword must be used after the TULLY keyword. To print in MOLCAS output D matrix, A matrix, B matrix, probabilities, randoms, population and energies at each substep (quite verbose, but gives you a lot of useful information).
DMTXThis keyword must be used after the TULLY keyword. With this keyword you can start your calculation with an initial A matrix (population density matrix). It is a complex matrix. In the first line after the keyword you must specify its dimension N. Then N lines (N values each line) with the real part of the matrix followed by N more lines with the imaginary part.
FRANDOMThis keyword must be used after the TULLY keyword. It fixes the random number to one provided by the user, in case a deterministic trajectory is needed
ISEEDThis keyword must be used after the TULLY keyword. The initial seed number is read from the input file. Then, seed numbers are modified (in a deterministic way), saved in the RunFile and read in the next call to the module. This way, MD simulations are reproducible.
MAXHOPThis keyword must be used after the TULLY keyword. It specifies how many non-adiabatic transitions are allowed between electronic states.
H5RESTARTThis keyword allows to restart a surface hopping trajectory calculation from an HDF5 file. The name of the restart file is given on the next line. Input examples

This example shows an excited state CASSCF MD simulation of a methaniminium cation using the Tully Surface Hop algorithm. Within the Surfacehop module The keyword TULLY enables the TDSE integration. The options used in this case are: (SUBSTEP=200) to specify 200 substep of electronic integration between Newton's, (DECOHERENCE=1) to deal with the decoherence using a decay constant of 0.1 hartree and (PSUB) to print the substeps matrices verbosely into the MOLCAS log.

  C  0.00031448  0.00000000  0.04334060
  N  0.00062994  0.00000000  1.32317716
  H  0.92882820  0.00000000  -0.49115611
  H  -0.92846597  0.00000000  -0.49069213
  H  -0.85725321  0.00000000  1.86103989
  H  0.85877656  0.00000000  1.86062860
  BASIS=  3-21G
  GROUP=  nosym

>>  FOREACH  ITER  in  (1  ..  1000)


>>  IF  (  $ITER  =  1  )

  FileOrb=  $Project.GssOrb
  Symmetry=  1
  Spin=  1
  nActEl=  2  0  0
  Inactive=  7
  RAS2=  2
  CIroot=  3  3  1

>>  COPY  $Project.JobIph  $Project.JobOld


  Symmetry=  1
  Spin=  1
  nActEl=  2  0  0
  Inactive=  7
  RAS2=  2
  CIroot=  3  3  1
  MDRLXR=  2

>>  COPY  $Project.JobIph  $Project.JobOld

  SUBSTEP  =  200


  DT=  10.0
  VELO=  3
  THER=  2

>>  END  DO
vibrot.tex this file belongs to the Molcas repository

next up previous contents index
Next: 8.48 vibrot Up: 8. Programs Previous: 8.46 SlapAf